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Abstract. IBM STAR-CITY is a system supporting Semantic road TrafficAna-
lytics and Reasoning for CITY. The system has ben designed (i) to provide in-
sight on historical and real-time traffic conditions, and (ii) to support efficient
urban planning by integrating (human and machine-based) sensor data using va-
riety of formats, velocities and volumes. Initially deployed and experimented in
Dublin City (Ireland), the system and its architecture have been strongly limited
by its flexibility and scalability to other cities. This paper describes its limitations
and presents the “any-city” architecture of STAR-CITY together with its seman-
tic configuration for flexible and scalable deployment in any city. This paper also
strongly focuses on lessons learnt from its deployment and experimentation in
Dublin (Ireland), Bologna (Italy), Miami (USA) and Rio (Brazil).

1 Introduction

Entering 2014, the transportation system has matured in all major cities in the world; it
only expands its infrastructure by a fraction of a percentage each year [1]. However, as
projections indicate that more than half the world’s population will be living in cities
by 2030, congestion will continue to grow at an alarming rate, adversely impacting
our quality of life and increasing the potential for accidents, long delays and other
indirect consequences such as bus bunching. These are expected to escalate, calling for
IT professionals to increase the functionalities, scalability, integration and productivity
of existing transportation systems through the use of operational improvements.

There are several traffic analysis tools available, and some open, for use; however,
they rarely encompass mechanisms for handling data heterogeneity, variety and inte-
gration. Therefore very few traffic systems are easily really portable from one city to
another one. Most of the existing modern traffic systems1 such as US TrafficView [2],
TrafficInfo, French Sytadin or Italian 5T mainly focus on monitoring traffic status in
cities using pre-determined and dedicated sensors (e.g., loop indiction detectors), all
exposing numerical data. Others, more citizen-centric such as the traffic layer of Google
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Maps or [3], provide real-time traffic conditions and estimation but do not deliver in-
sight to interpret historical and real-time traffic conditions. For instance the diagnosis
of traffic condition [4] or the problem of explaining traffic condition is not addressed
by state-of-the-art traffic systems. Basic in-depth but semantics-less state-of-the-art an-
alytics are employed, limiting also large scale real-time data interpretation and integra-
tion. Thus, context-aware computing together with reusability of the underlying data
and flexible deployment of traffic systems are limited. The reasoning functionalities are
also very limited and reduced to basic analytics such as traffic monitoring or prediction.

STAR-CITY2,3 (Semantic Traffic Analytics and Reasoning for CITY) [5], as a
daily-used system which integrates heterogeneous data in terms of format variety (struc-
tured and unstructured data), velocity (static and dynamic data) and volume (large
amount of historical data), has been mainly designed to provide such insights on histor-
ical and real-time traffic conditions. STAR-CITY completely relies on the W3C seman-
tic Web stack e.g., OWL 2 (Web Ontology Language) and RDF (Resource Description
Framework ) for representing semantics of information and delivering inference out-
comes. The strength of STAR-CITY lies in the ability of the system to perform various
types of semantic inferences i.e., spatio-temporal analysis, diagnosis, exploration and
prediction of traffic condition and congestion (cf. [5] for an high level presentation).
These inferences are all elaborated through a combination of various types of reasoning
i.e., (i) semantic based i.e., distributed ontology classification-based subsumption [6],
(ii) rules-based i.e., pattern association [7], (iii) machine learning-based i.e., entities
search [8] and (iv) sensor dynamic-based i.e., correlation [7].

Initially deployed and experimented in Dublin City (Ireland), the system, its archi-
tecture and its semantic-related components have shown limitations regarding their flex-
ibility and scalability to other cities. This paper describes their scenarios and their lim-
itations. We also present the “any-city” architecture of STAR-CITY together with its
semantic configuration for flexible and scalable deployment in any city. The paper also
strongly focuses on lessons learnt from the deployment and experimentation of the new
architecture in Dublin (Ireland), Bologna (Italy), Miami (USA) and Rio (Brazil), which
is completely novel with respect to past presented work [4] (STAR-CITY diagnosis in
Dublin), [9] (STAR-CITY prediction in Dublin) and [5] (STAR-CITY in Dublin). To
the best of our knowledge there is no single traffic system which (i) supports advanced
traffic analysis functionalities as STAR-CITY does, and (ii) scales up to major cities.

The paper is organized as follows: Section 2 presents the contexts and scenarios as-
sociated to Bologna, Miami, Rio and their main differentiators with Dublin. Section 3
describes the new flexible system architecture and configuration for “any city”. Section
4 reports some experimental results regarding scalability, flexibility and semantic ex-
pressivity. Section 5 reports on lessons learned from deploying STAR-CITY in major
cities. Section 6 draws some conclusions and talks about possible future directions.

2 Diagnosing Anomalies in Dublin, Bologna, Miami and Rio

As highlighted in Section 1 the STAR-CITY system has been designed for analyz-
ing, diagnosing, exploring and predicting traffic condition in cities. We focus on the

2 Video (.avi, .mov, m4v format) available: http://goo.gl/TuwNyL
3 Live system: http://dublinked.ie/sandbox/star-city/
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Table 1. (Raw) Data Sources for STAR-CITY in Dublin, Bologna, Miami and Rio

Source Data
Description

City
Type Source Dublin (Ireland) Bologna (Italy) Miami (USA ) Rio (Brazil)

Journey travel Traffic CSV format (47
times across the Department’s routes, 732 sensors) ✗ (not available)

Tr
af
fic

A
no

m
al
y

city TRIPS systema 0.1 GB per dayb

Vehicle activity SIRI: XML formate CSV format CSV format
Dublin Bus (GPS location, ✗ (596 buses, (893 buses, (1, 349 buses,
Dynamics line number, (not used) 80KB per update 225 KB per update 181 KB per update

delay, stop flag ) 11GB per dayd ) 43 GB per daye ) 14 GB per dayf )

Social- Reputable sources “Tweet” format - Accessed through Twitter streaming APIg

Media of road traffic Approx. 150
✗

Approx. 500
✗

Related conditions in tweets per dayh (not available) tweets per dayi (not available)
Feeds Dublin City (approx. 0.001 GB) (approx. 0.003 GB)

Road Works PDF format XML format HTML format
✗

and Maintenance
(approx. 0.003 GB (approx. 0.001 GB (approx. 0.001 GB

(not available)
per dayj ) per dayk ) per dayl )

Planned events with XML format - Accessed once a day through EventbritemAPIs

Social events small attendance Approx. 85 events Approx. 35 events Approx. 285 events Approx. 232 events

e.g., music event, per day (0.001 GB) per day (0.001 GB) per day (0.005 GB) per day (0.01 GB)Tr
af
fic

D
ia
gn

os
is

political event Planned events with XML format - Accessed once a day through EventfulmAPIs

large attendance
Approx. 180 events Approx. 110 events Approx. 425 events Approx. 310 events
per day (0.05 GB) per day (0.04 GB) per day (0.1 GB) per day (0.08 GB)

Bus Passenger Loading / Unloading
✗ ✗

CSV format CSV format
(information related to number of (not available) (not available) (approx. 0.8 GB (approx. 0.1 GB

passenger getting in / out) per daye ) per daye )
a Travel-time Reporting Integrated Performance System - http://www.advantechdesign.com.au/trips
b http://dublinked.ie/datastore/datasets/dataset-215.php (live)
c Service Interface for Real Time Information - http://siri.org.uk
d http://82.187.83.50/GoogleServlet/ElaboratedDataPublication (live)
e Private Data - No Open data
f http://data.rio.rj.gov.br/dataset/gps-de-onibus/resource/cfeb367c-c1c3-4fa7-b742-65c2c99d8d90 (live)
g https://sitestream.twitter.com/1.1/site.json?follow=ID
h https://twitter.com/LiveDrive - https://twitter.com/aaroadwatch - https://twitter.com/GardaTraffic
i https://twitter.com/fl511 southeast
j http://www.dublincity.ie/RoadsandTraffic/ScheduledDisruptions/Documents/TrafficNews.pdf
k http://82.187.83.50/TMC DATEX/
l http://www.fl511.com/events.aspx
m https://www.eventbrite.com/api - http://api.eventful.com

diagnosis-based reasoning scenarios of Bologna, Miami and Rio as they are the most
representative and exposed in terms of semantic Web technologies. In particular we dif-
ferentiate the latter three innovative in-use scenarios with the one from Dublin, which
has already been implemented, tested and experimented [4]. Table 1 synthesizes the
main important details of the data sets we have considered for this reasoning task.
We report major in-use challenges for each scenario where concrete solutions are pre-
sented (Section 3) and experimentation conducted (Section 4) for validation.

2.1 Diagnosing Traffic Congestion in Dublin City (Reminder of [4])

• Description: The diagnosis task in Dublin consists in explaining why the road traffic
is congested. Anomalies are captured by the Dublin journey travel time data set in Table
1 (cf. traffic anomaly row). There are a number of specific circumstances which cause
or aggravate congestion. However capturing an accurate explanation of the reasons of
congestion is a challenging problem. Traffic accidents, road works and social events
(e.g., music, political events) are considered as potential sources of explanation in the
Dublin context (cf. traffic diagnosis related rows).

• Motivation: Traffic congestion has a number of negative effects, which strongly af-
fects cities, their citizens and operators. For instance it reduces economic health because
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of the (i) non-productive activity of people stuck in their vehicles, (ii) wasted fuel,
among others. Capturing the explanation of traffic congestion will support the city and
transportation operators to act upon changing scenarios in real-time. For instance, given
accurate explanations of congestion, the city traffic manager could be pro-active by (i)
taking corrective actions on incoming traffic flow by changing the traffic strategies of
close traffic lights, (ii) alerting the appropriate emergency services, (iii) re-routing traf-
fic, (iv) better planning events in the city and more importantly (iv) informing its citizen
in real-time

• Challenge: Diagnosing traffic condition is a challenging research problem of interest
for the semantic Web community because (i) relevant data sets (e.g., road works, social
events, incidents), (ii) their correlation (e.g., road works and social events connected
to the same city area) and (iii) historical traffic conditions (e.g., road works and con-
gestion in Canal street on May 9th, 2014) are not fully integrated, linked and jointly
exploited. Recent progress in the area [4] demonstrated the applicability of semantic
Web technologies in solving this challenge.

2.2 Diagnosing Bus Congestion in Bologna

• Description: The diagnosis task in Bologna consists in explaining why buses are
congested. Contrary to the Dublin scenario, bus data is considered, providing more
sparse data (because of the moving bus-related sensors) and a different data format i.e.,
SIRI XML instead of CSV. In addition the amount of data used for diagnosis (cf. traffic
diagnosis row) is not as significative as in the Dublin scenario in terms of (i) size and
(ii) number of data sets e.g., no report of traffic incident in Bologna. Finally the road
works are exposed in Italian and digitalized in a different format.

•Motivation: cf. Motivation of Section 2.1 with a focus on bus congestion in Bologna.

• Challenges and STAR-CITY Limitations: Conceptually, diagnosing bus congestion
relies in a similar reasoning task of the one described in Section 2.1. However from
an in-use perspective diagnosing bus congestion in Bologna requires to address the
following technical challenges:

C1 Traffic anomalies are identified and represented differently.
How to capture a semantic, core representation of anomalies in any city?

C2 The sources of diagnosis and their size are not similar e.g., social media is missing.
How accuracy of diagnosis is impacted by its sources? Are they still representative?

C3 The sources of diagnosis are heterogeneous from one city to another one.
How to configure STAR-CITY in a way that is scalable and flexible to any city?

C4 Data exposed in Bologna is real-time information but with a very low throughput.
Could the architecture of STAR-CITY be decoupled from its streaming components?

C5 The schema of some data sources is in Italian cf. road works in Table 1.
How to make use of cross languages data sources?

2.3 Diagnosing Bus Bunching in Miami

• Description: The diagnosis task in Miami consists in explaining why buses bunched.
Fig.1 illustrates STAR-CITY in Miami. In public transport, bus bunching refers to a
group of two or more buses, which were scheduled to be evenly spaced running along
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Fig. 1. STAR-CITY In Miami. (color).

the same route, instead running in the same location at the same time. This occurs when
at least one of the vehicles is unable to keep to its schedule and therefore ends up in
the same location as one or more other vehicles of the same route at the same time.
Contrary to Dublin but similarly to Bologna scenario, bus data is considered but with
a much higher throughput, which may raise some questions regarding scalability of
STAR-CITY in Miami. Contrary to Dublin and Bologna scenarios, much more data
sources (i.e., passengers-related data) with larger size are considered. Again the format
of data slightly changed across cities.

• Motivation: The end result can be unreliable service and longer effective wait times
for some passengers on routes that had nominally shorter scheduled intervals. Another
unfortunate result can be overcrowded vehicles followed closely by near-empty ones.

• Challenges and STAR-CITY Limitations: In addition to challenges C1, C2 and C3

in Section 2.2 which are also valid in this context, diagnosing bus bunching in Miami
requires to address the following technical challenge:

C6 The number of diagnosis sources is larger e.g., bus passenger loading set is added.
How accuracy of diagnosis is impacted by new external sources? (dual to (b)).

2.4 Diagnosing Low On-Time Performance of Buses in Rio

• Description: The diagnosis task in Rio consists in explaining the low on-time per-
formance of buses i.e., buses which are heavily delayed. The reasons can range from
traffic incidents, accidents, bus bunching, detour, or unrealistic scheduling. Contrary to
the Dublin and Miami scenarios the amount of data sets of potential use for diagnosis
is very low i.e., only events and information about passengers loading are available. In
addition the schema of the latter data set is different and in Portuguese.

•Motivation: Such problems can result in unreliable bus services for Rio, which could
turn in complex problems such as bus bunching, and even more critical problems such
as emphasized in motivation of Section 2.1.

• Challenges and STAR-CITY Limitations: In addition to challenges C1, C2, C3, C5

and C6 in Sections 2.2 and 2.3 which are also valid in this context, diagnosing bus
delays in Rio requires to address the following technical challenges:

C7 The historic of information is 480 days while it is more than 3 years for other cities.
How accurate is the diagnosis in a context of limited historical information?
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This section described the problems which have not been foreseen by the initial ar-
chitecture of STAR-CITY, but which have strong impacts and limitations for flexible
and scalable deployment in Bologna, Miami and Rio. All challenges C1, C3-C5 are
problems where semantic web technologies have been strongly considered in the inno-
vative and deployed architecture of STAR-CITY in Bologna, Rio and Miami (cf. Sec-
tion 3) while challenges C2, C6 and C7 are related to data characteristics (availability,
relevance, accuracy) and their fit-for-purpose (cf. Section 4).

3 Flexible System Architecture and Semantic Configuration
The high-level architecture of STAR-CITY (both Dublin and Bologna, Miami, Rio ver-
sions) in Fig.2 consists of four main components: (i) semantic application configuration,
(ii) semantic application server, (iii) data layer and (iv) user interface. In this section we
explain how we adapted the initial version of STAR-CITY (running for Dublin) and
its underlying technologies (i) to address the aforementioned challenges C1, C3-C5 of
Section 2, and then (i) to be flexible for deployment in other major cities in the world.
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Fig. 2. High-Level System Architecture of STAR-CITY with References to (a) Challenges Ci

of Section 2, and (b) Initial, Removed, Added Components of Dublin STAR-CITY to Support
Flexible Deployment in Bologna, Miami and Rio. (color).

3.1 Semantic Application Configuration

The semantic application management and configuration component is the main com-
ponent of STAR-CITY which enables flexible and scalable deployment of the system
to other cities. Initially deployed and experimented in Dublin city, STAR-CITY did not
address the challenges C1, C3 and C5.

•ChallengeC1 “Anomaly Identification”: The identification of anomalies in the initial
version of STAR-CITY is pre-determined by some very simple fixed encoded rules, for
instance (1) encoding the rule “if travel time between sensorID203 and sensorID2 is less
than 183 seconds then trigger diagnosis service”.
TriggerDiagnosis(s1, s2, time) ← Sensor(s1) ∧ Sensor(s2) ∧ travelT ime(s1, s2, time, value)

∧ equalTo(s1, 203) ∧ equalTo(s2, 2)

∧ lessThan(value, 183) % with “183” is the min. threshold (1)
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Obviously such an approach is not scalable to other domains and even other cities. In-
deed, one would need to redefine the rules at every new deployment phase from scratch.
We address this problem by following [10], which provides semantics for capturing
anomalies at semantic level. The approach consists in supervising the end-user in an-
notating values ranges of sensors with predefined concepts “Anomaly” and “Normal”
from our domain ontology OD . This ontology, represented as a RDF-S taxonomy, is
simply used for defining the domain e.g., Dublin Travel Time and its anomalies. Further
domains can be easily added e.g., Bologna, Miami and Rio Bus domain. The appropri-
ate rules are then encoded semantically using SWRL rules4, which connect the logical
rules to the domain of application. Following this semantic extension of STAR-CITY,
end-user can easily extendOD, and then encode any anomaly identification rules.

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix dbpr: <http://dbpedia.org/resource/> .
@prefix addr: <http://schemas.talis.com/2005/address/schema#> .
@prefix rdfcal: <http://www.w3.org/2002/12/cal/icaltzd#> .
@prefix ibmVoc: <http://www.ibm.com/smartercities/cityfabric/voc#> .
@prefix busVoc: <http://www.ibm.com/SCTC/ontology/BusOntology.owl#> .
@prefix xmls: <http://www.w3.org/2001/XMLSchema#> .

<!-- Spatial Representation -->
<http://starcity.traffic.bus.miami.anomaly/venues/AltonRoad_10>

a geo:SpatialThing ; dbpr:Country_Code <dbpr#ISO_3166-1:US> ;
addr:countryName "USA" ; addr:localityName "Miami" ; addr:streetAddress "Alton Road" ;
rdfcal:summary "Bus Bunching Anomaly" ;
geo:lat "25.788371ˆˆ<xmls#float>" ; geo:long "-80.141280ˆˆ<xmls#float>" .

<!-- Temporal Representation and Type -->
<http://starcity.traffic.bus.miami.anomaly/event/Anomaly_1398032000_Bus113>

a rdfcal:Vevent ; a ibmVoc:Anomaly ; a ibmVoc:Traffic ;
ibmVoc:eventTag "flow" , "speed", "bunching", "delay", "road", "traffic" ;
ibmVoc:hasEventCategory rdfcal:Vevent , ibmVoc:Anomaly , ibmVoc:BusBunching ;
rdfcal:tzname "GMT" ; rdfcal:created "2014-04-20T20:01:20ˆˆ<xmls#dateTime>" ;
rdfcal:dtstart "2014-04-20T20:01:20ˆˆ<xmls#dateTime>" ;
rdfcal:dtend "2014-04-20T20:13:20ˆˆ<xmls#dateTime>" ;
rdfcal:summary "Bus Bunching Anomaly" ;
ibmVoc:hasSensingBUS <busVoc#Bus113> ; ibmVoc:hasSeverity "STOPPEDFLOW" ;
geo:location <http://starcity.traffic.bus.miami.anomaly/venues/AltonRoad_10> .

Fig. 3. Example of a Bus Bunching Anomaly Representation in Miami (rdf/s prefixes omitted)

• Challenge C1 “Anomaly Representation” (Fig.3): The initial representation of
anomalies did not require any semantics has only one type of anomaly was diagnosed in
the Dublin scenario. In larger cities, traffic anomalies could be of different types, which
need to be captured. The new representation of anomalies in STAR-CITY follows a
strict and simplistic (on purpose) representation of anomalies i.e., spatial, temporal rep-
resentations, types and associated key tags e.g., Miami bus 113 bunching in Fig.3. Such
a semantic representation is specifically important in the context of bus-related diagno-
sis since different types of bus anomalies may occur in one city e.g., delay, congestion,
bunching. Capturing and representing their types is very important to (i) understand
how anomalies and their types are correlated to their diagnoses, (ii) easily search among
anomalies which are captured by different systems e.g., bus congestion by a TRIPS sys-
tem, bus delays by a bus operator related system (cf. Dublin case where bus delay and
travel time could be provided by two different systems).

• Challenge C3 “Semantic Inter-City Configuration”: The semantic inter-city config-
uration challenge C3 is complimentary addressed by the semantic application config-

4 http://www.w3.org/Submission/SWRL/
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@prefix ibmVoc: <http://www.ibm.com/smartercities/cityfabric/voc#> .

<!-- Configuration Settings for Bus Congestion Diagnosis in Bologna -->
<http://starcity.traffic.bus.bologna/reasoning/diagnosis>

<!-- Configuration of inputs to be considered for diagnosis reasoning -->
<Class ibmVoc:Input> <Type ibmVoc:RoadWork> <Source "BolognaRoadWorkComplete">

<Property geo:lat> <Property geo:long> <!-- Spatial Constraints -->
<Property rdfcal:dtstart> <Property rdfcal:dtend> <!-- Temporal Constraints -->
<Property ibmVoc:description> <Property ibmVoc:areaOfWork> <!-- RoadWork Features -->

<Class ibmVoc:Input> <Type ibmVoc:MajorEvent> <Source "Eventful"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:MinorEvent> <Source "Eventbrite"> <!-- Property omitted -->

<!-- Configuration Settings for Bus Bunching Diagnosis in Miami -->
<http://starcity.traffic.bus.miami/reasoning/diagnosis>

<Class ibmVoc:Input> <Type ibmVoc:RoadWork> <Source "BolognaRoadWorkComplete">
<Property geo:lat> <Property geo:long> <!-- Spatial Constraints -->
<Property ibmVoc:description> <Property ibmVoc:areaOfWork> <!-- RoadWork Features -->
<Property rdfcal:dtstart> <Property rdfcal:dtend> <!-- Temporal Constraints -->
<Property ibmVoc:impact>

<Class ibmVoc:Input> <Type ibmVoc:MajorEvent> <Source "Eventful"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:MinorEvent> <Source "Eventbrite"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:Incident> <Source "Twitter"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:BusLoading> <Source "BusTransit"> <!-- Property omitted -->

Fig. 4. Semantic Configuration for Bologna and Miami Diagnosis Reasoning

uration (i.e., configuration-layer in this section), server (services-side in Section 3.2)
and data layer (data-side Section 3.3) in STAR-CITY. In the initial version of STAR-
CITY for Dublin, each and every dimension of our data sets has been represented in
OWL / RDF, reaching to a very detailed contextual information but also to (i) a very
tight model which is not flexible to other cities, and (ii) a time-consuming mapping
process (i.e., mapping from raw to RDF data cf. Section 3.3). The migration of STAR-
CITY from one city to another one requires major customization and many steps of
configuration. For instance the traffic impact of a road work event is defined in Dublin
and Miami, not Bologna; its area of work (e.g., secondary, pavement) is defined in Mi-
ami and Bologna, not in Dublin. Similarly traffic accidents (through social media) are
captured in the Dublin and Miami scenarios, but not for Bologna and Rio. Since the
diagnosis is highly coupled to the level and categories of representation of events, it is
very important that the inputs of diagnosis (i.e., traffic diagnosis row of Table 1) are
pre-configurable. To this end we let the (admin) users define the relevant raw data and
associated concepts to be considered for diagnosis. For instance, the diagnosis applica-
tion of Bologna and Miami could be defined as in Fig.4. In such a configuration, the
diagnosis reasoning can be configured with respect to its inputs (e.g., input of diag-
nosis for diagnosing bus congestion in Bologna), their types (e.g., RoadWork defined
in the ibmVoc ontology) and raw data sources (e.g., BolognaRoadWorkComplete) and
respective properties (e.g., latitude, longitude, area of work).

The new configuration settings of STAR-CITY, defined through the IBM Rational
family of software configuration management solutions and extended with semantics,
is flexible, easy to be exported to any city. Instead of directly interacting with the REST
APIs (cf. Fig.2), the semantic configuration is used to automatically adapt the APIs with
the appropriate settings. The city-wide customization is then driven by (the semantics
of) the vocabulary used for defining the inputs, their types, sources, properties.

• Challenge C5 “Multi-Lingual System”: STAR-CITY has been designed for running
with english vocabularies such as IBM ibmVoc. Such vocabularies, which strongly
drive the reasoning engine, do not offer multi-lingual features and very few connec-
tions to open vocabularies. This strongly limits the entry of non-english speakers to the
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STAR-CITY configuration, which turns to be the case for Bologna (Italian language)
and Rio (Portuguese language) administrators. Therefore the interpretation and cus-
tomization of inputs (e.g., configuration in Fig.4), results (e.g., diagnosis schema-related
such as their types cf. Fig.5) are rather difficult, and even impossible in some cases. We
address this problem by simply manually adding extra links (i.e., Linked Open Data
resources [11]) to all concepts of our IBM vocabulary.

(a) Diagnosis in Dublin (English) (b) Diagnosis in Bologna (Italian)

Fig. 5. Semantics-driven Multi-Lingual STAR-CITY (color). Diagnosis results are automatically
provided in preferred language by using language-related links of DBpedia. (Hyperlinks are pro-
videdfordescribingspecifictermse.g., cantiere-construction-notdisplayedforsakeofreadability).

By adding LOD links to our vocabulary we also give the possibility for non expert
users to get extra and detailed information related to non self-explanatory events such as
construction, obstruction, drainage (by simply follow new hyperlinks in STAR-CITY).
Fig.6 illustrates a simple extension of our vocabulary, where associated Italian5 and
Portuguese6 transcriptions of Traffic collision are used in the appropriate context.
<http://www.ibm.com/smartercities/cityfabric/voc#TrafficIncident>

a http://www.ibm.com/smartercities/cityfabric/voc#Event
owl:sameAs <http://dbpedia.org/resource/Traffic_collision"> <!-- [A] -->
<!-- owl:sameAs <http://it.dbpedia.org/resource/Incidente_stradale> through ref. to [A] -->
<!-- owl:sameAs http://pt.dbpedia.org/resource/Acidente_rodovirio> through ref. to [A] -->

Fig. 6. Sample of a Simple LOD Extension of IBM STAR-CITY Vocabulary

3.2 Semantic Application Server

• Challenge C3 “Semantic Inter-City Configuration”: As reported in Fig.2 and Fig.7,
web-facing services use a set of SA-REST services7. These services are implemented
on a custom application running on IBMWebSphere Application Server. REST-related
technologies have been considered in STAR-CITY because of its lightweight proto-
col. Extended with a semantic layer, SA-REST was the most appropriate solution to
accommodate our semantic configuration (cf. Challenge C3 in Section 3.1). In details
the semantic configuration is combined with the skeleton of each STAR-CITY APIs to

5 Italian http://it.dbpedia.org/resource/Incidente_stradale for English
Traffic Collision.

6 Portuguese http://pt.dbpedia.org/resource/Acidente_rodovirio for En-
glish Traffic Collision.

7 http://www.w3.org/Submission/SA-REST/
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provide customized SA-REST analysis, exploration, diagnosis and prediction services
e.g., diagnosing bus bunching in Miami with road works and accidents, or both. The
description of the low-level implementation of the services is described in the APIs reg-
istry (e.g., how technically diagnosis reasoning is interacting with input data sources)
while the semantic and high-level representation of the expected services are described
in the semantic configuration (e.g., Figure 4 for configuring STAR-CITY Bologna and
Miami). Such an architecture, which discharges the manual and syntactic configuration
of services, ensures flexible deployment of customized STAR-CITY functionalities in
the context of any city.

: STAR−CITY Components

Functionality
Registry

Diagnosis, Prediction)

CAPTION:

: Data Flow Ordering

: Research Challenges

SA−REST Services
(Analysis, Exploration,

Instantiation of
Semantic Configuration

is Described by

is Described by

Knowledge
Background Services

SA−REST

STAR−CITY APIs

2

C3

3

C3

1

i

Fig. 7. Semantic Instantiation and Implementation of STAR-CITY SA-REST Services. (color).

3.3 Data Layer

Contrary to the semantic application server, a step of manual configuration is required
in the data layer. It is mainly in charge of defining the data access points (e.g., URL of
TRIPS datab in Table 1), protocols (e.g.,HTTP for TRIPS), frequency (e.g., everyminute
for TRIPS) and various basic raw data parsing (e.g., adding timestamp to data collected
for TRIPS). The Perl programming language, its standard modules together with CRON
jobs are used for this purpose.We also manually define the mapping procedure from raw
data source to semantic representation. The mapping procedure, completely described
in Section 3.2 of [9], consists of a set of mapping files which describes how raw data is
transformed in semantic representations associated to our domain ontology. Basic XSLT
(for XML) and custom tabular transformation procedures (for CSV) are applied.

• Challenge C4 “Semantic Stream Agnostic Architecture”: Initially designed in a
streaming infrastructure, the data access and transformation of STAR-CITY is now
stream-agnostic. Ontology streams are not generated anymore from the data layer. The
main reasons of this architecture shift are: (i) low throughput of STAR-CITY-related
sensors in our city test cases, (ii) cost of streaming platform deployment, (iii) cost
of configuration, and (iv) weak flexibility (regarding the on-the-fly integration of new
data). Instead data transformation and aggregation is performed independently in a tra-
ditional manner (i.e., using pre-defined java routines and Perl scripts). The output of
the transformation is a semantic and temporal representation. Therefore, conceptually,
the output is similar to the initial version i.e., OWL statements are stored in jena TDB,
where some temporal indexes have been added.

4 Experimental Results

This section focuses on challengesC2,C6 andC7 by comparing and analyzing the scal-
ability and accuracy of the reasoning component of STAR-CITY in Dublin, Bologna,
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Miami and Rio. In particular we aim at (i) analyzing how our approach reacts to the size
(C2), number (C6) and historic (C7) of data sources (cf. Sections 4.2 and 4.3) within our
city context (cf. Section 4.1), and (ii) studying the impact of semantic expressivity by
adjusting the underlying ontologies (cf. Section 4.4). Requested by traffic controllers,
scalability and accuracy of the system have been extensively tested to validate the rele-
vance, usefulness and (agreed) deployment of STAR-CITY. The experiments have been
conducted on a server of 6 Intel(R) Xeon(R) X5650, 3.46GHz cores, and 6GB RAM.

4.1 Context

Live data from Dublin, Bologna, Miami and Rio (Table 1) are ingested and transformed
in OWL/RDF (Table 2) following the principles of the STAR-CITY data layer (Fig.2
and Section 3.2 of [9]) and using different static background knowledge (Table 3), are
used for experimentation. The highest expressivity of the ontologies is OWL EL.

Table 2. Details of Real-time Live Data in No Particular Order (average figures)

Real Time,
City

Frequency of Raw Update Semantic Update Semantic Conversion
Live Data Update (s) Size (KB) Size (KB) #RDF Triples Computation Time (s)

[a] Journey Times Dublin 60 20.2 6, 102 63, 000 0.61
Bologna 120 31.8 1, 166 4, 550 0.295

[b] Bus Miami 40 66.8 1, 766 11, 000 0.415
Rio 60 96.8 2, 366 16, 145 0.595

[c] Incident Dublin 600 0.2 1.0 7 0.002
Miami 180 0.2 1.0 9 0.002
Dublin once a week 146.6 77.9 820 3.988

[d] Road Works Bologna once a day 78.9 133.2 1, 100 0.988
Miami 3600 102.6 103.6 912 1.388
Dublin 240.7 297 612 1.018

[e] City Events Bologna once a day 111.2 149 450 0.434
Miami 637.2 789 1, 190 1.876
Rio 585.3 650 950 1.633

[f] Bus Loading Miami 40 833 2, 500 4, 500 0.390
Rio 60 69.7 650 1, 230 0.147

The objective is to diagnose traffic anomalies in the different test cities i.e., traffic
congestion in Dublin, bus congestion in Bologna, bus bunching in Miami, low on-time
performance of buses in Rio. The evaluation is achieved on a different data sets com-
binations since our test cities have access to different data sets. From the most to the
least complete case we have: [b,c,d,e,f] for Miami, [a,c,d,e] for Dublin, and [b,e,f] for
Rio,[b,d,e] for Bologna (cf. Table 2 for data set {a,b,c,d,e,f} reference). Specifically we
evaluate the impact of the data sets combination on scalability and accuracy.

Table 3. Static Background Knowledge for Semantic Encoding

Ontology Size (KB) #Concepts
#Object #Data

#Individuals
Imported Data Sets

Properties Properties Ontologies Covered

IBM Travel Time 4, 194 41 49 22 1, 429 Time [a]
IBM SIRI-BUS [4] 41.9 21 17 18 - Geo [b]
LODEa(initial) 12 14 16 - - [e]
(extended) 56 87 68 31 - Time, Geo [c-f]
W3C Timeb 25.2 12 24 17 14 - [a-f]
W3C Geoc 7.8 2 4 - - - [a-f]
DBpedia Only a subset is used for annotation i.e., 28 concepts, 9 data properties [c-e]
a http://linkedevents.org/ontology/2010-10-07/rdfxml/
b http://www.w3.org/TR/owl-time/
c http://www.w3.org/2003/01/geo/



Semantic Traffic Diagnosis with STAR-CITY 303

4.2 Scalability Experimentation and Results

Fig.8 reports the scalability of our diagnosis reasoning and core components (i.e., data
transformation, OWL / RDF loading in Jena TDB, anomaly detection) of STAR-CITY
by comparing their computation time in different cities and contexts. Similarly to data
transformation and OWL / RDF loading, the anomaly detection and diagnosis reasoning
have been performed over one day of traffic.

• Challenges C2, C6“Impact of Data Sources (and their combination)”: The number
and size of data sets have strong negative impact on the overall STAR-CITY. Indeed
the more data sets the more overhead on transformation, loading, and reasoning. For
instance STAR-CITY performs better in Bologna (data sets [b,d,e]) than in Miami (data
sets [b,c,d,e,f]), although the latter results remain scalable.

•ChallengesC7 “Impact of Historic Data”: As expected the computation performance
(of one day) of raw data transformation is not impacted by the size of historical infor-
mation (cf. secondary vertical x axis) while the computation of the OWL / RDF loading
slightly increases accordingly. The latter is caused by the overhead of RDF triples load-
ing on the TDB store, which requires some non negligible time times for re-indexing
e.g. 100 minutes of indexing over one complete day of RDF storage in Rio. More in-
terestingly the more historical information the more computation time, specifically for
diagnosis reasoning e.g., a factor of 5.3 from an historic of 10 days to 480 days in
Miami. This is caused by the intensive event similarity search over historical events
performed by the diagnosis [4].
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Fig. 8. Scalability of STAR-CITY in Dublin, Bologna, Miami and Rio

4.3 Accuracy Experimentation and Results

Fig.9 reports the impact of historical information (challengesC2,C6) and size and num-
ber of data sets (challenge C7) on accuracy of diagnosis results in Dublin, Bologna,
Miami and Rio. The accuracy has been evaluated by comparing our explanation results
against those estimated by transportation experts (used as ground truth) in their respec-
tive cities. A basis of one complete day of experimentation has been used i.e., 2, 800,
240, 1190 and 3, 100 traffic anomalies for respectively Dublin, Bologna, Miami and
Rio. Fig.9 reports the average accuracy of diagnosis results.
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• Challenges C2, C6“Impact of Data Sources (and their combination)”: The more
data sources the more accurate the diagnosis results. For instance the accuracy of di-
agnosis is the highest in the context of Miami (with the largest number of datasets i.e.,
[b,c,d,e,f]) while the accuracy is the lowest for Bologna (with the smallest number of
datasets i.e., [c,d,e]) for all historical configurations. Interestingly, we learned that the
bus passenger loading dataset has a stronger positive impact on diagnosis accuracy than
the traffic incident dataset in all historical configurations |D| = 10, 60, 120, 240 and
480 cf. Bologna context vs. Miami context.

• Challenges C7 “Impact of Historic Data”: Reducing the number of historical events
decreases accuracy of diagnosis. The more similar historical events the higher the prob-
ability to catch accurate diagnosis. For instance the accuracy of diagnosis results is
improved by a factor of 1.5 by multiplying the number of historical days by a factor 8
(from 60 to 480 days).
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Fig. 9. Accuracy of STAR-CITY Diagnosis in Dublin, Bologna, Miami and Rio

4.4 Expressivity Experimentation and Results

We slightly adjust the context (Section 4.1) by modifying the expressivity of the under-
lying ontologies (Table 3). Initially in OWL EL, we removed existential constructs of
the representation to capture knowledge in RDF/S. We also extend the latter knowledge
to capture the OWL RL dialect. Finally we consider OWL SROIQ(D) by adding extra
artificial constraints to the initial model. The number of historical days |D| considered
for diagnosis is fixed to 480.

• Expressivity vs. Scalability: Fig.10 reports the scalability of STAR-CITY using dif-
ferent levels of representation. Unsurprisingly the RDF/S configuration is the most
scalable while the SROIQ(D) is the most time consuming in all contexts. The di-
agnosis reasoning is the most impacted components i.e., (on average) +750% from
RDF/S to SROIQ(D). The computation time of anomaly detection (+410%) is also
altered while the OWL / RDF loading (+1.5%) and data transformation (+1.1%) are
less impacted. The diagnosis reasoning is based on consistency checking and seman-
tic matching functionalities8, which are constrained by the expressivity of the model.
8 Diagnosis reasoning is achieved by semantically comparing events and their characteristics
over time.
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Fig. 10. Expressivity vs. Scalability of STAR-CITY in Dublin, Bologna, Miami and Rio

Similarly the more expressive the model the more time consuming is the anomaly de-
tection, following results from [10]. These claims are demonstrated by results of Fig.10.

• Expressivity vs. Accuracy: Fig.11 reports the accuracy of STAR-CITY using differ-
ent levels of representation. Interestingly the RDF/S version of STAR-CITY is over
performed by the OWL EL (+186%), OWL RL (+174%) and OWL SROIQ(D)
(+190%) versions. By reducing the expressivity of the model (i.e., RDF/S) we tend
to light and loose the semantic representation of events in Table 3, which in turn largely
reduces the accuracy of the semantic matching functions (crucial during the diagnosis
phase). In other words downgrading the model to RDF/S largely impacts the accuracy
of diagnosis since all discriminating elements of the events cannot be considered by the
matching procedure, which ends up with a large portion of similar (and more critically
non-discriminable) events. Upgrading the models to OWL EL, RL or SROIQ(D)
adds extra semantic features to events which can be used for semantic matching and
comparison, hence a better semantic events discrimination and diagnosis accuracy.

The OWL EL, RL and SROIQ(D) configurations reach roughly similar accuracy
results, although the OWL SROIQ(D) version is slightly better than the OWL EL
(+0.97%) and RL (+0.91%) versions. The differences are not significative since the
OWL RL and SROIQ(D) versions do not differentiate events descriptions much fur-
ther than OWL EL. They actually simply support a refinement of the matching scores.

5 Lessons Learned
Deploying STAR-CITY and its semantics-aware architecture in more than one city
raised new challenges C1-C7 which we addressed in the new version of the deployed
system. The universal anomaly identification, representation (C1) and configuration
(C3) were the most critical challenges from a flexible, scalable deployment inter-city.
We extensively use semantic technologies for addressing these issues i.e., (i) seman-
tic model for C1, (ii) semantic configuration and SA-REST services for C3. Even so
some manual tasks are required to be achieved e.g., identification of anomalies ranges,
definition of OWL / RDF mapping process (for data transformation). The OWL / RDF
(concept) linking (alignment) process has also been performed manually to address C5,



306 F. Lécué et al.
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Fig. 11. Expressivity vs. Accuracy of STAR-CITY in Dublin, Bologna, Miami and Rio

but only once. However the latter needs to be replicated for each new data source and
mapping presented to STAR-CITY. The automation of this process is a complex task as
it required to align descriptions from very expressive vocabularies with concepts from
unexpressive models such as DBpedia.

The semantic stream conversion was not beneficial to the overall architecture as
it adds overhead on costs, deployment, configuration, systems interactions. Since the
throughput of sensors in the four cities was considerably low we shifted the semantic
transformation to a more traditional architecture. Shifting architectures did not impact
the performance of the system (experimentation not reported in this paper). Even if
higher throughput sensors could be an issue, we did not face it in our city contexts.

As experimented in Fig.10, expressive representation models means scalability is-
sues. Even if the accuracy of the reasoning results is correlated to the expressivity of
the semantic model, we noted differences in scale and impact cf. OWL EL vs. RDF/S
configurations in Fig.11, cf. OWL EL vs. SROIQ(D) configurations in Fig.11. There-
fore defining the appropriate level of representation is not a trivial task, and need to be
driven by the application needs while ensuring scalable and accurate processing.

Data from sensors evolve over time. We considered a subset of the W3C Time on-
tology to represent the starting date/time and a simple temporal extension of TDB.
However more complex time feature could have been used for compacting semantic
information e.g., temporal intervals. We did not address this problem but a complex
temporal-aware representation mode would support more complex reasoning e.g., over
time intervals. STAR-CITY uses basic methods to evaluate loose temporal similarity.
However research challenges, already tackled by [12], would need to be considered for
more accurate temporal joints.

From a pure STAR-CITY perspective, reducing the number of historical events (to-
gether with the number and size of sources for diagnosis) increases scalability, but also
decreases accuracy. Therefore the more source the better for STAR-CITY. However the
scalability of the ingestion, transformation and loading of semantic representation is
strongly altered by these dimensions (cf. indexing issues raised by challengeC7 in Sec-
tion 4.2). The latter raises requirements towards scalable (big) semantic data structure.

Applying STAR-CITY to other cities raise also challenges regarding the well-known
problem of data interpretation in general. Before adding any semantics, we were facing
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the problem of making sense of schema-less data, specifically when data was described
in Italian and Portuguese. For instance most content of bus passengers loading data set
is not really necessary and does not need semantic transformation.

6 Conclusion

IBM STAR-CITY is a system supporting Semantic (road) Traffic Analytics and
Reason-ing for CITY. Initially deployed and experimented in Dublin City (Ireland),
the system, its architecture and its semantic-related components have shown limitations
regarding their flexibility and scalability to other cities. This paper, focusing on the
diagnosis reasoning component of STAR-CITY, described (i) its semantics-related lim-
itations in the context of Bologna (Italy), Miami (USA), Rio (Brazil), and (ii) the inno-
vative “any-city” architecture of STAR-CITY together with its semantic configuration
for flexible and scalable deployment in any city. The paper also reported experimenta-
tions of STAR-CITY in Bologna,Miami and Rio, which have validated the architecture,
design and specifications of new deployed system.

As emphasized in Section 5 the challenges related to automated semantic data linking
and loading are immediate in-use problems to be addressed, while the issues related to
temporal compact representation are longer-term challenges.
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