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Abstract. This article presents labelled sequent calculi SALC and S []
ALC

for the basic Description Logic (DL) ALC. Proposing Sequent Calculus
(SC) for dealing with DL reasoning aims to provide a more structural way
to generated explanations, from proofs as well as counter-models, in the
context of Knowledge Base and Ontologies authoring tools. The ability
of providing short (Polynomial) proofs is also considered as an advantage
of SC-based explanations with regard to the well-known Tableaux-based
reasoners. Both, SALC and S []

ALC satisfy cut-elimination, while S []
ALC also

provides ALC counter-example from unsuccessful proof-trees. Some sug-
gestions for extracting explanations from proofs in the presented systems
is also discussed.

Keywords: description logics, sequent calculus, proof theory.

1 Introduction

Logic languages have been frequently used as a basis to build tools and frame-
works for Knowledge Representation (KR) and artificial intelligence (AI). Auto-
matic Theorem Provers offered the mechanical support to achieve the derivation
of meaningful utterances from already known statements. One could consider
First-Order Logic (FOL) as a basis for KR-system, however, it is undecidable
and hence, would not provide answers to any query. The use of decidable frag-
ments of FOL and other logics have been considered instead. DATALOG is
among the logics historically considered. In general after getting to a decidable
logic to KR, one starts extending it in order to accommodate more powerful fea-
tures, recursive DATALOG is an example. Other possibilities include extending
by adding temporal, deontic or even action modalities to the core logic. However,
authoring a Knowledge Base (KB) using any KR-Logic/Framework, is far from
an easy task. It is a conceptually hard task, indeed. The underlying semantics of
the specific domain (SD) has to be formalized by means of linguistic components
as Predicates, Individual-Designators, Rules or Axioms, even Modalities and so
on. The Logic Language should not provide any glue concerning this task, since
it is expected to be neutral. Anyway, two main questions raise up when one
designs a KB: (1) Is the KB consistent? (2) Is the KB representing the right
Knowledge at all? Again, with the help of an Automatic Proof Procedure1 for
1 A Sat-Solver Procedure can be also considered.
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the underlying logic it is possible to design authoring environments to support
the KB correct definition. It is recommendable to use a decidable underlying
logic, any case. The authoring environment ability on providing glues on why
the current KB is inconsistent is as important as the consistency test itself. It is
also important the ability to explain how and why a known piece of knowledge
is supported (or not) by the current KB. To either ability we simply refer to
explanation, according to our terminology.

Description Logics (DL) are quite well-established as underlying logics for
KR. The core of the DL is the ALC description logic. In a broader sense, a KB
specified in any description logic having ALC as core is called an Ontology. We
will not take any discussion on the concept just named as well as we will not
discuss also the technological concerns around Ontologies and the Web. A DL
theory presentation is a set of axioms in the DL logical language as well as an
OWL-DL file. DL have implemented reasoners, for example Pellet and Racer,2

only to mention two. There are also quite mature Ontology Editors. Protegé is
the more popular and used free editor. However, the Reasoners (theorem provers)
as well as the Editors do not have a good, if any, support for explanations. As far
as we know, the existing DL-Reasoners implement the Tableaux proof procedure
first published in [1]. Concerning approaches on explanation in DL, the papers
[2,3] describe methods to extract explanations from DL-Tableaux proofs. In [4]
it is described the explanation extraction in quite few details, making impossible
a feasible comparison with the approach followed in our article.

Simple Tableaux3 cannot produce short proofs (polynomially lengthy proofs).
This follows from the theorem that asserts that simple Tableaux cannot produce
short proofs for the Pigeonhole Principle (PHP). PHP is easily expressed in
propositional logic, and hence, is also easily expressed in ALC. On the other
hand, Sequent Calculus (SC) (with the cut rule) has short proofs for PHP. In
[5,6] it is shown, distinct SC proof procedures that incorporate mechanisms
that are somehow equivalent to introducing cut-rules in a proof. Anyway, both
articles show how to obtain short proofs, in SC, for the PHP. We believe that
super-polynomial proofs, like the ones generated by simple Tableaux, cannot
be considered as good sources for text generation. The reader might want to
consider that only the reading of the proof itself is a super-polynomial task
regarding time complexity.

The generation of an explanatory text from a formal proof is still under in-
vestigation by the community, at least if one consider good explanations. The
use of Endophoras4 in producing explanations is a must. However, the produced
text should not contain unstructured nesting of endophoras, a text like this is
hard to follow. Some structure is need relating the endophoras. We believe that

2 Racer is an industrial product, and currently must be bought.
3 A simple Tableaux is not able to implement analytical cuts. The Tableaux used for

ALC is simple.
4 An anaphora is a linguistic reference to an antecedent piece of text. A Cataphora

is a linguistic reference to a posterior piece of text in a phrase. Endophora refer to
both, anaphora and cataphora.



Toward Short and Structural ALC-Reasoning Explanations 169

as more structured the proof is, as easier the generation of a better text, at least
concerning the use of endophoras.

In section 2 we present SALC and its main proof-theoretical features. Section 3
shows how the structural subsumption algorithm described in [7] for a fragment
of ALC is subsumed by SALC . Section 4 shows how to obtain a counter-model
from an unsuccessful proof-tree, providing an explanatory power for negative
answers similar to Tableaux, from S []

ALC , an implementation-driven conservative
extension of SALC . Section 5 presents an example of explanation extracted from
a proof in SALC focusing on comparing our system with the well-known work
described in [2] as well as more recent works on ALC-explanation. Our main
contribution, besides the proof theoretical one, is an step towards short and
structured explanations in ALC theorem proving.

2 The ALC Sequent Calculus

ALC is a basic description language [7] and its syntax of concept descriptions is
described as follows:

φc ::= ⊥ | A | ¬φc | φc � φc | φc � φc | ∃R.φc | ∀R.φc

where A stands for atomic concepts and R for atomic roles.
The Sequent Calculus for ALC (SALC) that it is shown in Figures 1 and 2 was

first presented in [8] where it was proved to be sound and complete. It is based
on the extension of the language φc. Labels are lists of (possibly skolemized) role
symbols. Its syntax is as follows:

L ::= R, L | R(L), L | ∅
φlc ::= Lφc

L

where R stands for roles, L for list of roles and R(L) is an skolemized role
expression.

Each consistent labeled ALC concept has an ALC concept equivalent. For
instance, Q2,Q1αR1(Q2),R2 is equivalent to ∃R2.∀Q2.∃R1.∀Q1.α.

Let α be an φlc formula; the function σ : φlc → φc transforms a labeled ALC
concept into an ALC concept. ALC sequents are expressions of the form Δ ⇒ Γ
where Δ and Γ are finite sequences of labeled concepts. The natural interpreta-
tion of the sequent Δ ⇒ Γ is the ALC formula

�
δ∈Δ σ (δ) 


⊔
γ∈Γ σ (γ).

In Figures 1 and 2 the lists of labels are omitted whenever it is clear that a rule
does not take into account their specific form. This is the case for the structural
rules. In all rules α, β stands for ALC concepts (formulas without labels), γ, δ
stands for labeled concepts, Γ, Δ for list of labeled concepts. L, M, N stands
for list of roles. All of this letters may have indexes whenever necessary for
distinction. If L1αL2 is a consistently labeled formula then D(L2) is the set of
role symbols that occur inside the skolemized role expressions in L2. Note that
D(L2) ⊆ L1 always holds.

Consider L1αL2 ; the notation
L2
L1 α

L1
L2 denotes the exchanging of the universal

roles occurring in L1 for the existential roles occurring in L2 in a consistent way
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α ⇒ α

Δ ⇒ Γ
Δ, δ ⇒ Γ

weak-l Δ ⇒ Γ
Δ ⇒ Γ, γ

weak-r

Δ, δ, δ ⇒ Γ

Δ, δ ⇒ Γ
contraction-l

Δ ⇒ Γ, γ, γ

Δ ⇒ Γ, γ
contraction-r

Δ1, δ1, δ2, Δ2 ⇒ Γ

Δ1, δ2, δ1, Δ2 ⇒ Γ
perm-l

Δ ⇒ Γ1, γ1, γ2, Γ2

Δ ⇒ Γ1, γ2, γ1, Γ2
perm-r

Fig. 1. The System SALC: structural rules

such that the skolemization is dually placed. This is used to express the negation
of labeled concepts. If β ≡ ¬α the formula

Q
R β

R
Q(R) is the negation of RαQ(R).

In the rules (∀-r) and (∀-l) R ∈ D(L2) must hold. In rules (prom-2),
(∀-r) and (∀-l), the notation L′

2, N ′
i means the reconstructions of the skolem-

ized expressions on those lists regarding the modification of the lists L1 and Mi,

Δ, L1,RαL2 ⇒ Γ

Δ, L1(∀R.α)L′
2 ⇒ Γ

∀-l
Δ ⇒ Γ, L1,RαL2

Δ ⇒ Γ, L1(∀R.α)L′
2

∀-r

Δ, L1αR(L1),L2 ⇒ Γ

Δ, L1(∃R.α)L2 ⇒ Γ
∃-l

Δ ⇒ Γ, L1αR(L1),L2

Δ ⇒ Γ, L1(∃R.α)L2
∃-r

Δ, Lα∅, Lβ∅ ⇒ Γ

Δ, L(α � β)∅ ⇒ Γ
�-l

Δ ⇒ Γ, Lα∅ Δ ⇒ Γ, Lβ∅

Δ ⇒ Γ, L(α � β)∅ �-r

Δ, ∅αL ⇒ Γ Δ, ∅βL ⇒ Γ

Δ, ∅(α � β)L ⇒ Γ
�-l

Δ ⇒ Γ, ∅αL, ∅βL

Δ ⇒ Γ, ∅(α � β)L
�-r

Δ ⇒ Γ, L1αL2

Δ,
L2
L1 ¬α

L1
L2 ⇒ Γ

¬-l
Δ, L1αL2 ⇒ Γ

Δ ⇒ Γ,
L2
L1 ¬α

L1
L2

¬-r

L1αL2 ⇒ M1β1
N1 , . . . , Mnβn

Nn

L1αL2,R ⇒ M1β1
N1,R, . . . , Mnβn

Nn,R
prom-1

M1β1
N1 , . . . , Mnβn

Nn ⇒ L1αL2

R,M1β1
N′

1 , . . . , R,Mnβn
N′

n ⇒ R,L1αL′
2

prom-2

Δ1 ⇒ Γ1,
L1αL2 L1αL2 , Δ2 ⇒ Γ2

Δ1, Δ2 ⇒ Γ1, Γ2
cut

Fig. 2. The System SALC: logical rules
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respectively. The restrictions in the rules (∀-r) and (∀-l) means that the role R
can only be removed from the left list of labels if none of the skolemized role
expressions in the right list depends on it.

In [9] the cut-elimination5 theorem is proved for SALC .

3 Comparing with the Structural Subsumption
Algorithm

The structural subsumption algorithms (SSC), presented in [7], compare the syn-
tactic structure of two normalized concept descriptions in order to verify if the
first one is subsumed by the second one. Due to lack of space, we can only say
that each step taken by a bottom-up construction of a SALC proof corresponds
to a step towards this matching by means of the SSC algorithms. The following
construction on SALC deals with normalized concepts (the sub-language of ALC
required by SSC ) [7]. It would conclude the subsumption (sequent) whenever
the top-sequents ensure also their respective subsumptions. This is just what
the (recursive) SSC does. Consider:

A1 ⇒ B1

∀R1.C1, A1 ⇒ B1

A1, ∀R1.C1 ⇒ B1

R1C1 ⇒ S1D1
R1C1 ⇒ ∀S1.D1

∀R1.C1 ⇒ ∀S1.D1

A1, ∀R1.C1 ⇒ ∀S1.D1

A1, ∀R1.C1 ⇒ B1 � ∀S1.D1

A1 � ∀R1.C1 ⇒ B1 � ∀S1.D1

4 Obtaining Counter-Models from Unsuccessful
Proof-Trees

The structural subsumption algorithm is restricted to a quite inexpressive lan-
guage and simple Tableaux based algorithms generally fails to provide short
proofs. On the other hands, the later has an useful property, it returns a counter-
model from an unsuccessful proof. A counter-model, that is, an interpretation
that falsifies the premise, is a quite useful artifact to a knowledge-base engineer.

In this section we show how to extend SALC system in order to be able to
construct a counter-model from unsuccessful proofs too. In this way, SALC can
be compared with Tableaux algorithms, indeed. In fact SALC is a structural-free
sequent calculus designed to provide sequent proofs without considering back-
tracking during the proof-construction from conclusion to axioms. Concerning
ALC the novelty is focused on the promotion and frozen rules, shown in the
sequel.

Let us consider the system S []
ALC , a conservative extension of SALC , presented

in Figure 3. S []
ALC sequents are expressions of the form Δ ⇒ Γ where Δ and Γ

5 This theorem states that any SALC-provable sequent can be proved without the
cut-rule.
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are sets of labeled concepts (possibly frozen). A frozen formula (labeled concept)
α is represented as [α]. The notation [Δ] means that each δ ∈ Δ is frozen (i.e.
{[δ] | δ ∈ Δ}). Frozen formulas may also be indexed as [α]n. The notation can
also be extended to a set of formulas [Δ]n = {[δ]n | δ ∈ Δ}.

Due to space limitation, it is only displayed the rules of S []
ALC that modify

the indexes of the formulas in the sequents. The remaining formulas are those of
Figure 2 except cut (prom-1 and prom-2 of Figure 3 replace theirs corresponding
in Figure 2) and considering that Δ and Γ range over formulas and frozen
formulas (indexed or not).

Reading bottom-up the rules prom-1 and prom-2 freeze all formulas that do
not contain the removed label. In rules frozen-exchange, prom-1 and prom-2
[Δ]n and [Γ ]n contains all the indexed-frozen formulas of the set of formulas in
the antecedent (resp. succedent) of the sequent. The n is taken as the greatest
index among all indexed-frozen formulas present in Γ and Δ. In rule prom-2 the
notation L′

2 means the reconstructions of the skolemized expressions on list L2

regarding the modification of the list L1. The notation Γ (R) and (R)Γ denotes
the addition of the Role R to the beginning of the existential and universal labels
respectively. In rule frozen-exchange all formulas in Δ2 and Γ2 must be atomic.

Δ, α ⇒ α, Γ

[Δ]n, [Δ1], L1αL2 ⇒ Γ1 , [Γ2], [Γ ]n

[Δ]n, Δ1,
L1αL2,R ⇒ Γ1

(R), Γ2, [Γ ]n
prom-1

[Δ]n, [Δ2], Δ1 ⇒ L1αL2 , [Γ1], [Γ ]n

[Δ]n, Δ2,
(R)Δ1 ⇒ R,L1αL′

2 , Γ1, [Γ ]n
prom-2

Δ1, [Δ2]n+1, [Δ]n ⇒ Γ1, [Γ2]n+1, [Γ ]n
frozen-exchange

[Δ1], Δ2, [Δ]n ⇒ [Γ1], Γ2, [Γ ]n

Fig. 3. Sub-system of S []
ALC containing the rules that modify indexes

In Section 2, we stated the natural interpretation of a sequent Δ ⇒ Γ in SALC
as the ALC-formula

�
δ∈Δ σ (δ) 


⊔
γ∈Γ σ (γ). Given an interpretation function

�I we write I |= Δ ⇒ Γ , if and only if,
�

δ∈Δ σ(δ)I 

⊔

γ∈Γ σ(γ)I [8]. Now we
have to extend that definition to give the semantics of sequents with frozen and
indexed-frozen formulas.

Definition 1 (Satisfability of frozen-labeled sequents). Let Δ ⇒ Γ be a
sequent with its succedent and antecedent having formulas that range over labeled
concepts, frozen labeled concepts and indexed-frozen labeled concept. This sequent
has the general form Δ1, [Δ2], [Δ3]1, . . . , [Δk]k−2 ⇒ Γ1, [Γ2], [Γ3]1, . . . , [Γk]k−2.
Let (I, I ′, I1 . . . , Ik−2) be a tuple of interpretations. We say that this tuple satisfy
Δ ⇒ Γ , if and only if, one of the following clauses holds: I |= Δ1 ⇒ Γ1,
I ′ |= Δ2 ⇒ Γ2, I1 |= Δ3 ⇒ Γ3, . . ., Ik−2 |= Δk ⇒ Γk.



Toward Short and Structural ALC-Reasoning Explanations 173

Obviously, Δ ⇒ Γ is not satisfiable by a tuple of interpretations, if and only if,
no interpretation in the tuple satisfy the corresponding indexed (sub) sequent.

The following lemma shows that S []
ALC is a conservative extension of SALC .

Lemma 1. Consider Δ ⇒ Γ a SALC sequent. If P is a proof of Δ ⇒ Γ in S []
ALC

then it is possible to construct a proof P ′ of Δ ⇒ Γ in SALC .

Proof. The proof of Lemma 1 is done by simple induction over the number of
applications of prom-1 and prom-2 occurring in a proof P . Let us consider a top
most application of rule prom-1 of the system S []

ALC . Due to space limitations,
we present prom-1 cases only, prom-2 can be dealt similarly.

Below we present how we can build a new proof P ′ in SALC (right) from a
proof P in S []

ALC (left). We have to consider two cases according to the possi-
ble outcomes from the top most application of the rule prom-1. The first case
deals with the occurrence of a frozen-exchange rule application between the
prom-1 application and the initial sequent. This situation happens whenever
the formulas frozen by prom-1 rule were necessary to obtain the initial sequent,
in a bottom-up construction of a S []

ALC proof. Note that above the top most
prom-1 application, there might exist at most one frozen-exchange application.

Δ′
1, [Δ

∗
2], α ⇒ α, [Γ ∗

1 ], Γ ′
2

Π1

Δ1, [Δ∗
2] ⇒ [Γ ∗

1 ], Γ2
frozen-exch

[Δ1], Δ∗
2 ⇒ Γ ∗

1 , [Γ2]
Π2

[Δ1], L1βL2 ⇒ Γ1, [Γ2]
prom-1

Δ1,
L1βL2,R ⇒ Γ1

R, Γ2

α ⇒ α
some weak

Δ′
1, α ⇒ α, Γ ′

2

Π ′
1

Δ1 ⇒ Γ2
some weak

Δ1,
L1βL2,R ⇒ Γ1

R, Γ2

In the second case, the initial sequent is obtained (bottom-up building of the
proof) without the application of frozen-exchange rule:

[Δ1], Δ′
2, α ⇒ α, Γ ′

1, [Γ2]
Π1

[Δ1], L1βL2 ⇒ Γ1, [Γ2]
prom-1

Δ1,
L1βL2,R ⇒ Γ1

R, Γ2

α ⇒ α
some weak

Δ′
2, α ⇒ α, Γ ′

1

Π ′
1

L1βL2 ⇒ Γ1 prom-1
L1βL2,R ⇒ Γ1

R

some weak
Δ1,

L1βL2,R ⇒ Γ1
R, Γ2

Applying recursively the transformations above from top to bottom we obtain
a proof in SALC from a proof in S []

ALC . ��

A fully atomic S []
ALC sequent has every (frozen and not frozen) formula in the

antecedent as well as in the succedent as atomic concepts. A fully expanded
proof-tree of Δ ⇒ Γ is a tree having Δ ⇒ Γ as root, each internal node is a
premise of a valid S []

ALC rule application, and each leaf is either a S []
ALCaxiom (ini-

tial sequent) or a fully atomic sequent. In the following lemma we are interested
in fully expanded proof-trees that are not S []

ALC proofs.
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Lemma 2. Let Π be a fully expanded proof-tree having Δ ⇒ Γ , a sequent of
S []
ALC , as root. From any non-initial top-sequent, one can explicitly define a

counter-model for Δ∗ ⇒ Γ ∗, where Δ∗ ⇒ Γ ∗ is the SALC sequent related to
Δ ⇒ Γ .

Proof. Note that the construction of the counter-model (a tuple of interpreta-
tion) is made from top to bottom, starting from any top-sequent that is no initial
in the fully expanded tree.

From the natural interpretation of a sequent in SALC as an ALC concepts
subsumption, we know that an interpretation I falsifies a sequent Δ ⇒ Γ if
there exists and element c such that c ∈ ΔI and c /∈ Γ I . In S []

ALC a tuple of
interpretation falsifies a sequent Δ ⇒ Γ if each of its elements (interpretations)
falsifies the correspondent sequent (Definition 1).

We proof Lemma 2 by cases, considering each rule of the system S []
ALC . For

each rule, we must prove that given a tuple t that falsifies its premises, one can
provide a tuple t′ that falsifies its conclusion. In t′ each interpretation may be
an extension of its correspondent in t.

It can be easily seen that from a non-initial and fully atomic top-sequent, we
are able to define a tuple falsifying it.

Since rules (�-r), (�-l), (�-r), (�-l), (¬-r), (¬-l), (∃-r), (∃-l), (∀-r) and (∀-
l) do not touch in the frozen formulas, to verify the preservation of falsity in
those rules, one can consider just the second projection of the tuple. Due the
lack of space, we only show the case (�-l). If there exist an I that falsifies
Δ, ∅αL ⇒ Γ then we can state that in the domain of I there exist an individual
c such that c ∈ σ(Δ)I ∩ σ(∅αL)I and c /∈ σ(Γ )I . From the hypothesis and basic
Set Theory, we can conclude that c ∈ σ(Δ)I ∩ σ(∅αL)I ∪ σ(∅βL)I , which from
∃R.C � ∃R.D ≡ ∃R.(C �D) is equivalent to c ∈ σ(Δ)I ∩σ(∅α � βL)I , falsifying
the conclusion since c /∈ σ(Γ )I . The same idea holds for the right premise.

For the rule frozen-exchange we must consider the whole tuple of interpre-
tations, since it manipulates the frozen formulas. Suppose a tuple such that
(I, ∅, I1, . . . , In+1) |= Δ1, [Δ3]1, . . . , [Δk]n, [Δ2]n+1 ⇒ Γ1, [Γ3]1, . . . , [Γk]n,
[Γ2]n+1 where the second projection of the tuple is an empty interpretation
since there is no frozen formulas without index in the premise. In order to falsify
the conclusion of the rule one simply considers the tuple (In+1, I, I1, . . . , In) |=
Δ2, [Δ1], [Δ3]1, . . . , [Δk]n ⇒ Γ2, [Γ1], [Γ3]1, . . . , [Γk]n.

For rule prom-1, suppose that (I, I′, I1, . . . , In) falsifies the premise. From
that, we can obtain a new tuple t′ = (I ′′, ∅, I1, . . . , In) that falsifies the conclu-
sion L1αL2,R, Δ1, [Δ3]1, . . . , [Δk]n ⇒ Γ1

(R), Γ2, [Γ3]1, . . . , [Γk]n. To construct t′,
the unique non trivial part is the construction of I′′. This comes from I and I ′

from the tuple that falsifies the premise. I ′′ preserve the structure of both I and
I ′ and also the properties that make those interpretation falsify the premise.
Due space limitation, the complete procedure can not be presented here. The
principal idea is that whenever a crash of names of individuals occurs, that is,
names that occurs in both, one can consistently renames the individuals from I
or I ′. The reader must note that this is a perfectly adequate construct.
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Starting from a tuple of interpretations defined to falsify the fully atomic
top-sequent we obtain by the preservation of the falsity, provide by the S []

ALC
rules, the falsity of the root of the proof-tree. We can see that the counter-model
construction also works for SALC sequents when submitted to the S []

ALC proof-
system. ��

5 Providing Explanations from Proofs

Consider the proof:

Doctor ⇒ Doctor
weak-r

Doctor ⇒ Rich, Doctor �-r
Doctor ⇒ (Rich � Doctor)

prom-2
childDoctor ⇒ child(Rich � Doctor)

weak-l
	, childDoctor ⇒ child(Rich � Doctor)

neg-r
	 ⇒ ¬Doctorchild, child(Rich � Doctor)

weak-r
	 ⇒ ¬Doctorchild, Lawyerchild, child(Rich � Doctor)

∃-r
	 ⇒ ¬Doctorchild, ∃child.Lawyer, child(Rich � Doctor)

∃-r
	 ⇒ ∃child.¬Doctor,∃child.Lawyer, child(Rich � Doctor) �-r

	 ⇒ ((∃child.¬Doctor) � (∃child.Lawyer)), child(Rich � Doctor)
prom-1

	child ⇒ ((∃child.¬Doctor) � (∃child.Lawyer))child, child(Rich � Doctor)child

¬-l
	child, child¬((∃child.¬Doctor)� (∃child.Lawyer)) ⇒ child(Rich � Doctor)child

∀-r
	child, child¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∀child.(Rich � Doctor)child

∀-l
	child, ∀child.¬((∃child.¬Doctor)� (∃child.Lawyer)) ⇒ ∀child.(Rich � Doctor)child

∃-r
	child, ∀child.¬((∃child.¬Doctor)� (∃child.Lawyer)) ⇒ ∃child.∀child.(Rich � Doctor)

∃-l∃child.	,∀child.¬((∃child.¬Doctor)� (∃child.Lawyer)) ⇒ ∃child.∀child.(Rich � Doctor)
�-l∃child.	� ∀child.¬((∃child.¬Doctor)� (∃child.Lawyer)) ⇒ ∃child.∀child.(Rich � Doctor)

which could be explained by: “(1) Doctors are Doctors or Rich (2) So, Everyone
having all children Doctors has all children Doctors or Rich. (3) Hence, everyone
either has at least a child that is not a doctor or every children is a doctor or
rich. (4) Moreover, everyone is of the kind above, or, alternatively, have at least
one child that is a lawyer. (5) In other words, if everyone has at least one child,
then it has one child that has at least one child that is a lawyer, or at least one
child that is not a doctor, or have all children doctors or rich. (6) Thus, whoever
has all children not having at least one child not a doctor or at least one child
lawyer has at least one child having every children doctors or rich.”

The above explanation was build from top to bottom (toward the conclusion
of the proof), by a procedure that tries to not repeat conjunctive particles (if
- then, thus, hence, henceforth, moreover etc) to put together phrases derived
from each subproof. In this case, phrase (1) come from weak-r, �-r; phrase (2)
come from prom-2; (3) is associated to weak-l, neg-r; (4) corresponds to weak-r,
the two following ∃-r and the �; (5) is associated to prom-1 and finally (6) cor-
responds to the remaining of the proof. The reader can note the large possibility
of using endophoras in the construction of texts from structured proofs as the
ones obtained by either SALC or S []

ALC .
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6 Conclusion and Further Work

In this article it is shown two sequent calculi for ALC. Both are cut-free, and
one (S []

ALC) is designed for implementation without the need of any backtrack-
ing resource. Moreover S []

ALC provides counter-model whenever the subsumption
candidate is not valid in ALC. We briefly suggest how to use the structural
feature of sequent calculus in favour of producing explanations in natural lan-
guage from proofs. As it was said at the introduction, the use of the cut-rule
can provide shorter proofs. The cut-rule may not increase the complexity of the
explanation, since it simply may provide more structure to the original proof.
With the help of the results reported in this article one has a solid basis to build
mechanisms to provide shorter and good explanation for ALC subsumption in
the context of a KB authoring environment. The inclusion of the cut-rule, how-
ever, at the implementation level, is a hard one. Presently, there are approaches
to include analytical cuts in Tableaux, as far as we know there is no research on
how to extend this to ALC Tableaux. This puts our results in advantage when
taking explanations, and the size of the proofs as well, into account. There are
also other techniques, besides the use of the cut-rule, to produce short proofs in
the sequent calculus, see [5] and [10], that can be used in our context.
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