
A Rewriting Semantics for a Software Architecture
Description Language

Alexandre Rademaker1 , Christiano Braga1 , Alexandre Sztajnberg2

1Instituto de Computaç̃ao
Universidade Federal Fluminense

2Instituto de Mateḿatica e Estatı́stica
Universidade do Estado do Rio de Janeiro

(arademaker,cbraga)@ic.uff.br, alexszt@ime.uerj.br

Abstract. A rewriting logic semantics for the software architecture description language CBabel
is given, revisiting and extending previous work by some of the authors, which now includes a
revision of the previous semantics and the addition of new features covering all the language.
The CBabel Tool is also presented. CBabel Tool is a prototype executable environment for
CBabel, that implements the given CBabel’s rewriting logic semantics and allows the execution
and verification of CBabel descriptions in the Maude system, an implementation of rewriting
logic. It is assumed from the reader basic knowledge of algebraic specifications.

1. Introduction

In [2] the basic ideas of a rewriting logic [16] semantics for the software architecture description language
(ADL) CBabel [10] were presented. In this paper we give thecompleteformalization of CBabel in rewriting
logic, that is, its rewriting semantics, andalso present theCBabel Tool, an executable environment for
CBabel implemented in the Maude system [5]. The CBabel Tool is a direct implementation of the rewriting
semantics of CBabel which allows the execution and verification of CBabel descriptions. We shall focus on
the formalization of CBabel and the use of the CBabel Tool. A detailed report on the implementation of the
CBabel Tool will be given elsewhere.

Let us begin by recalling the motivation for software architecture description languages and then
the syntax of CBabel. The purpose of software architecture description languages is to keep the descrip-
tion of how distributed components areconnectedapart from the descriptions of the internal behavior of
each component. Moreover,connection patternsmay be used to describe how components, that may ex-
ecuteconcurrently, are linked together. These patterns are calledcontracts. Examples of such contracts
are mutual exclusion and sequential coordination. The separation-of-concerns provided by architectural
descriptions has several interesting properties including modularity of the architectural descriptions, reuse
of components in different architectures, and (dynamic) reconfiguration of architectures. CBabel is an ADL
that besides the usual architectural primitives [19], such as components and ports, provides contracts as first
class constructions. We will present the syntax of CBabel by means of four variants of the classic producer-
consumer-buffer example. Later in Section 4 we will verify these specifications in Maude using the CBabel
Tool. It is worth emphasizing that this isnot the same example used in [2]. It is indeed aricher version than
that, which uses all features of CBabel. Moreover, the CBabel descriptions are verified using the CBabel
Tool, as opposed to [2] where the Maude specifications were used directly. Actually, as shown in Section 4,
these Maude specifications are nowautomaticallygenerated by the CBabel Tool.

In the producer-consumer-buffer example there is a producer willing to access a buffer, that may
be bounded, to add an item it has just produced, and a consumer willing to access the buffer to consume an
item from the buffer. There are at least two problems in such a situation: (i) the producer and the consumer
should not access the buffer at the same time, which is the so called race condition, and (ii) the buffer
is bounded and than the producer should not add more items than the buffer may hold and the consumer
should not remove an item from an empty buffer.

A CBabel architecture that specifies the producer-consumer-buffer configuration is given in Fig-
ure 1. Modules specify the component’s interfaces that an architecture puts together, which are in this
example,PRODUCER, CONSUMERand BUFFER. A special module, called anapplication, declares how each
component should be instantiated and how they should be linked together. In Figure 1 the application mod-
ule is namedPC-DEFAULT. It creates one instance for each component and link them together through their
ports. There are input and output ports. Input ports may be informally understood as the “services” that a

componentprovidesand output ports as the services that a componentrequires. Therefore, in our example,
a producer needs a service to deliver or put an item, and respectively, a consumer to get. A buffer module
offers services to put items in and get items from its internal buffer. The actual request of a service occurs
throughport stimuli, that is, the fact that a producer is requesting to put an item is represented by a stimulus
to its put port. In the same way, a buffer offering or providing its service to put (resp. get) an item to (resp.
from) its internal buffer is represented by a stimulus to its put (resp. get) port.1 A sequence of such port
stimuli is called aninteraction.

Also, ports may communicateasynchronouslyandsynchronously. In the latter case output ports
expect a returning or acknowledging stimulus from the input port linked to it, which is not true in the former
case. Asynchronous ports are specified using theoneway keyword. The examples in Figures 1, 2, and 3
declare synchronous ports.

module BUFFER { application PC-DEFAULT {
var int maxItems = int(2) ; instantiate BUFFER as buff ;
var int items = int(0) ; instantiate PRODUCER as prod ;

instantiate CONSUMER as cons ;
in port buffer-put ; instantiate DEFAULT as default1 ;
in port buffer-get ; instantiate DEFAULT as default2 ;

}
link prod.producer-put to default1.def-in ;

connector DEFAULT { link default1.def-out to buff.buffer-put ;
in port def-in ;
out port def-out ; link cons.consumer-get to default2.def-in ;

link default2.def-out to buff.buffer-get ;
interaction{ }

def-in > def-out ;
} module CONSUMER {

} out port consumer-get ;
}

module PRODUCER {
out port producer-put ;

}

Figure 1: Producer-consumer-buffer architecture

As we mentioned before, this architecture has both a race condition problem betweenprod and
cons , instances ofPRODUCERandCONSUMER, respectively, and also may have overflow and underflow prob-
lems if the buffer is bounded. To solve the race condition problem one could use a mutual exclusive contract
to coordinate the access of the producer and the consumer to the buffer, since an interaction will occur ei-
ther through portmutex-in1 or mutex-in2 . Figure 2 presents a new application module that connects a
producer, a consumer and a buffer through a mutual exclusion connector that mediates the access to the
buffer.

connector MUTEX { application PC-MUTEX {
in port mutex-in1 ; instantiate BUFFER as buff ;
in port mutex-in2 ; instantiate PRODUCER as prod ;
out port mutex-out1 ; instantiate CONSUMER as cons ;
out port mutex-out2 ; instantiate MUTEX as mutx ;

exclusive{ link prod.producer-put to mutx.mutex-in1 ;
mutex-in1 > mutex-out1 ; link mutx.mutex-out1 to buff.buffer-put ;
mutex-in2 > mutex-out2 ; link cons.consumer-get to mutx.mutex-in2 ;

} link mutx.mutex-out2 to buff.buffer-get ;
} }

Figure 2: MUTEXconnector and the PC-MUTEXapplication

The problem of bounded access to the buffer still exists in the architecture of Figure 2. To solve
this problem one may use aguarded contract. It specifies that two ports may interact if a certain condition
holds. Once the condition holds thebeforeblock of the contract is executed. When the acknowledge
stimulus arrive to the output port, theafter block of the guarded contract is executed. Another concept
that is typically used together with guarded contracts isstatevariables. State variables are shared-memory
variables. A change to one such variable by one component is immediately noticed by another component
that is bound to it. In CBabel state variables are declared in the components that share the variables and
the application modulebindsthem together specifying that when one of them has changed the other should
immediately notice the change.

Figure 3 specifies two guards in the connectorsGUARD-PUTandGUARD-GET, to control the access to
the buffer from the producer and from the consumer, respectively. They control the access to the buffer by
means of state variablesitems , empty and full . The state variablesp-items andg-items , in GUARD-PUT

1One may have noticed that the actualitem type is not declared as a parameter ofproducer-put , for instance. This is due to
the fact that we are actually interested in verifying properties related to the control flow of messages in an architecture and not in the
properties about the data being carried by the messages.

and GUARD-GETconnectors, are bound toitems variable in the buffer. Variablesg-empty , p-full , and
p-maxitems are bound toempty , full , andmaxitems variables as described inPC-MUTEX-GUARDSapplication
module. Whenever the number of items exceedsmaxItems , the upper bound of the buffer, the state variable
full turns true and thus blocks any insertion into the buffer. The opposite happens when the buffer has no
items at all and thenGUARD-GETblocks any removal from the buffer.

connector GUARD-GET { connector GUARD-PUT {
var bool full = FALSE ; var bool empty = TRUE ;
staterequired int g-items ; staterequired int p-maxitems ;
staterequired bool g-empty ; staterequired int p-items ;

staterequired bool p-full ;
in port get-in ; in port put-in ;
out port get-out ; out port put-out ;

interaction { interaction {
get-in > put-in >

guard(full == TRUE) { guard(empty == TRUE) {
after: { after: {

g-empty = TRUE ; p-full = TRUE ;
if (g-items == int(0)) { if (p-items == p-maxitems) {

full = FALSE ; empty = FALSE ;
} }

} }
} > get-out ; } > put-out ;

} }
} }

application PC-MUTEX-GUARDS {
instantiate BUFFER as buff ; instantiate MUTEX as mutx ;
instantiate PRODUCER as prod ; instantiate GUARD-GET as gget ;
instantiate CONSUMER as cons ; instantiate GUARD-PUT as gput ;

link mutx.mutex-out2 to gget.get-in ; link prod.producer-put to mutx.mutex-in1 ;
link gput.put-out to buff.buffer-put ; link mutx.mutex-out1 to gput.put-in ;
link gget.get-out to buff.buffer-get ; link cons.consumer-get to mutx.mutex-in2 ;

bind int gget.g-items to buff.items ; bind bool gget.g-empty to gput.empty ;
bind int gput.p-items to buff.items ; bind int gput.p-maxitems to buff.maxItems ;
bind bool gput.p-full to gget.full ;

}

Figure 3: Guarded connectors and the PC-MUTEX-GUARDapplication

One last example is to allow producers and consumers to be asynchronous. (See Figure 4.) Note
that the three architectures shown in Figures 1, 2, and 3 are kept the same. The “unwanted” answers from
theGUARD-PUTandGUARD-GETconnectors toPRODUCERandCONSUMER, since the output ports of the guards
are synchronous, are simply disregarded. Moreover, in this particular example, their properties are also
kept in the asynchronous version, that is, the architecture from Figure 1 has both the race condition and the
underflow and overflow problems, the architecture in Figure 2 solves the race condition problem, and the
architecture in Figure 3 solves both problems.

module PRODUCER { module CONSUMER {
oneway out port producer-put ; oneway out port consumer-get ;

} }

Figure 4: Asynchronous output port declarations

Rewriting logic is a logic and semantic framework to which several models of computation, logics
and specification languages have been mapped to [13] due to its unified view of computation and logic.
Maude is one implementation of rewriting logic that realizes it with high-performance. Together with its
meta-programming facilities, the Maude system provides a rich tool for the development of formal tools.
Moreover, Maude has built-in linear temporal logic model-checking capabilities [7] and several verification
tools have been developed for Maude, such as Clavel’s Inductive Theorem Prover [4]. Another useful
feature of the Maude language is its object-oriented syntax available as object-oriented modules.

The CBabel ADL has a very natural interpretation in object-oriented terms such as components
as classes, component’s instances as objects, port declarations as messages and port stimulus as message
passing [2]. The rewriting semantics that we have given to CBabel uses the object-oriented notation for
rewriting logic and is implemented as a transformation function in Maude using its meta-programming
capabilities. This transformation function is the core of the CBabel Tool execution environment prototype.

The rest of the paper is organized as follows. Section 2 gives the necessary background in rewriting
logic and object-oriented rewrite theories in Maude. Section 3 gives the rewriting semantics of CBabel.
Section 4 presents the execution and verification of CBabel descriptions in Maude using the CBabel Tool.
In Section 5 we briefly comment on related works. Section 6 concludes this paper with our final remarks.

2. Rewriting Logic and Maude

A rewrite theoryR is a tuple(Σ, E, R), whereΣ is the rewrite theory’s signature,E is the set of equations
andR is the set of rewrite rules. The setE of equations has the constraint of beingconfluentandterminating,
which roughly means that every term should have a unique normal form and that should be no infinite chain
of rewrites. The rulesR should becoherent, that is, alternating between equations and rules does not loose
rewrite computations. Rules are appliedmoduloE, that is, the rewrite relation is defined on the equivalence
classes of terms in the initial algebra of the equational specification(Σ, E) with variables,TΣ(X).

Rewriting logic is parameterized by its underlying equational logic. (In particular membership
equational logic [17], a generalization of order-sorted equational logic, is chosen in the Maude system.)
Moreover, the notion offrozenoperators [3] has been added to rewrite theories, generalizing them. However,
to keep the presentation simple, in the following rules of deduction for rewriting logic we choose order-
sorted equational logic as underlying logic and the version of rewriting logic where frozen operators are not
considered.

• Reflexivity. For each termt in the initial algebra ofΣ with variablesTΣ(X),

(∀X)t −→ t

• Equality .
(∀X)u −→ v E ` (∀X)u = u′ E ` (∀X)v = v′

(∀X)u′ −→ v′

• Congruence. For eachf : k1 . . . kn → k in Σ, with ti, t
′
i ∈ TΣ(X)ki

, 1 ≤ i ≤ n,
(∀X)t1 −→ t′1 . . . (∀X)tm −→ t′m

(∀X)f(t1, . . . tm) −→ (∀X)f(t′1, . . . t′m)
• Replacement. For each finite substitutionθ : X → TΣ(Y), and for each rule of the form,

l : (∀X)t −→ t′ ⇐ (
∧

i ui = u′
i) ∧ (

∧
j wj −→ w′

j)∧
i(∀Y)θ(ui) = θ(u′

i) ∧
∧

j(∀Y)θ(wj) −→ θ(w′
j)

(∀Y)θ(t) −→ θ(t′)
• Transitivity .

(∀X)t1 −→ t2 . . . (∀X)t2 −→ t3
(∀X)t1 −→ t3

Rewriting logic is a computational logic to specify concurrent systems. The inference rules above
allows us to infer all the possible finitary concurrent computations of a system specified as a rewrite theory
as follows: (i) reflexivity is the possibility of having idle transitions, (ii) equality means that states are equal
moduloE, (iii) congruence is a general form of sideways parallelism, (iv) replacement combines an atomic
transition at the top using a rule with nested concurrency in the substitution, and (v) transitivity is sequential
composition.

One of the most useful and important classes of concurrent systems is that of concurrent object
systems. Rewriting logic has anobject-basednotation, that was quite useful to us while giving the semantics
for CBabel, since it is very natural to think of CBabel primitives in object-oriented terms, as we have already
mentioned in Section 1.

In particular, object-oriented syntax in the Maude language represents the concurrent state, or the
system configuration, as amultisetof objects and messages, declared as juxtaposition with the following
operator declaration.

op : Configuration Configuration -> Configuration [ctor assoc comm id: null] .

The keywordop is used to declare an operator in Maude. The keywordsctor , assoc , comm, and
id are attributes of the juxtaposition operator meaning that it is a constructor that satisfies the structural
laws of associativity and commutativity and has identitynull , declared as a constant operator of sort
Configuration . It should be noted, however, thatany algebraic structure can be used to represent a sys-
tem’s concurrent structure. The multiset representation is one particular representation available in the
Maude system.

Objects and messages are singleton multiset configurations being subsorts of the configuration sort
so that more complex configurations are generated out of them by multiset union. An object is represented
as a term〈 O : C | a1 : v1 , . . . , an : vn〉 whereO is the object’s identifier,C is the object’s class identifier,
ai is an object’s attribute, andvi is ai’s corresponding value. The order of the attributes is not relevant,
so the , operator is also declared with attributesassoc andcomm. Classes are declared in Maude with
syntaxclass C | a1 : s1 , . . . , an : sn . whereC is the class name andsi is the sort required for attributeai.
It is also possible to give subclass declarations, withsubclass syntax (similar to that ofsubsort) so that

all attributes and rewrite rules of a superclass are inherited by a subclass which can have additional at-
tributes and rules of its own. The syntax of messages is declared using themsg keyword in a way similar
to an operator declaration. For instance, a message namedto that is parameterized by the object identi-
fier of the sender object, the object identifier of the receiver object and some data would be declared as,
msg to : Oid Oid Data -> Msg .

The concurrent interactions between objects are axiomatized by rewrite rules. The general form
of such a rule is given in Maude as follows:

crl [r] : M1 . . . Mn 〈 O1 : F1 | atts1 〉 . . . 〈 Om : Fm | attsm 〉 ⇒
〈 Oi1 : F ′

i1
| atts′

i1
〉 . . . 〈 Oik

: F ′
ik

| atts′
ik

〉
〈 Q1 : D1 | atts′′

1 〉 . . . 〈 Qp : Dp | atts′′
p 〉

M ′
1 . . . M ′

q

if C .

wherer is the rule label, theMs are message expressions,i1, . . . , ik, are different numbers among the
original1, . . . ,m, andC is the rule’s condition.

3. An Object-oriented Rewriting Semantics for CBabel Software
Architecture Primitives

The fundamental software architecture elements of CBabel could be informally defined as follows: (i) a
componentcan be either a module or a connector. A module is a “wrapper” to an entity that performs
a computation, such as an object or a function. A connector mediates the interaction among modules,
governing how they communicate and coordinate; (ii) it is through aport that components communicate
requesting functionalities or “services” from each other. Ports communicate following a message passing
model; (iii) coordination contractsdefine how a group of ports should interact. It may be sequentially,
mutually exclusive, or guarded by a condition; (iv) anapplication is a special module that declares how
each component should be instantiated, how components should be linked, and how state variables should
be bound to each other; (v)links establish the connection of two ports enabling them to interact; (vi)
state required variablesallow for components to exchange information atomically, that is, within a shared-
memory model of communication. The following sections formalize these concepts.

3.1. Components

A component can be either a module or a connector. A module may declare local variables, input ports and
output ports. A connector may, in addition to the same declarations that may be done in a module, declare
a coordination contract.

Components are mapped to rewrite theories in rewriting logic. Each component gives rise to a
class declaration in the associated rewrite theory’s signature, named after the component’s name, with a
constructor method. A component instance is represented by an object instance of such class. Moreover,
such an object may answer to messagesdo anddone. These messages represent, or signalize, the beginning
and end of a component’sinternal behavior. Moreover, they carry the sequence of object identifiers in a
given interaction, that is, a finite sequence of port stimuli from ports that are related by link declarations.
The interaction sequence is necessary so that a component instance may be properly acknowledged in a
synchronous interaction when there is more than one component instance linked to a given input port.
Local variables in a CBabel module are mapped to class attributes in the associated class in rewrite theory’s
signature.

Let us formalize components in rewriting logic. Note, however, that the declaration of ports will be
formalized in Section 3.2 and the formalization of coordination contracts is given in Section 3.3. A CBabel
module declarationM is a tuple(n, V, I,O) wheren is an identifier representing the module’s name, the
setV of variable declarations holds triples(v, l, t) wherev is an identifier representing the variable’s name,
l is the value of typet which v should be initialized to, andt is the variable’s type which must be one of
the CBabel’s built-in primitive types. SetsI andO are both sets of identifiers holding input and output port
declarations respectively.

The concept of aninteraction, informally described above as a sequence of port stimulus from ports
that are related by link declarations, are formalized as astackof pairs with the first projection being an object
identifier and the second projection a port identifier, declared in the rewrite theoryCBABEL-CONFIGU-
RATION, which contains basic declarations that will be made explicit in the forthcoming sections, together
with the declaration of messagesdo, done : Oid PortId Interaction → Msg. The rewriting semantics
of a CBabel module is a rewrite theoryR = (Σ, E, R) whose signatureΣ imports the declarations of the
CBABEL-CONFIGURATIONrewrite theory, and a class declarationclass n | S, whereS is the attribute
set of classn, whose elements are named after the elements ofV . The signatureΣ also includes the

class constructor operator declarationinstantiate-n : Oid → Object . The setE of equations includes
Equation 1

eq instantiate-n(ω) = < ω : n | a1 : l1, . . . , an : ln > . (1)

whereω is an object identifier,ai is an object attribute named aftervi, andli is the value that initializesvi.

Equation 1 specifies that given an object identifier,instantiate-n produces an object instance of
classn with attributes initialized to the valuesl declared for the CBabel component variables inV . We
continue in Section 3.2 with the formalization of ports.

3.2. Ports

A CBabel component may have input ports or output ports. Input ports are used to provide a service from
a given component and output ports are used by a component to request a service from other components.
Moreover, port communication may be synchronous or asynchronous. The former case is declared in
CBabel by means of the keywordoneway . The absence of theoneway keyword as a port declaration modifier
means that communication through that port should be synchronous.

In a given CBabel component, port declarations are mapped to message declarations in the as-
sociated rewrite theory’s signature. Port stimulus is represented, of course, as passing a message to the
appropriate object, that is, to the object that represents the component linked to that port. (See Section 3.4
for the formalization of CBabel’s link declaration.) However, instead of declaring one message for every
port, we have chosen to declare two general messagessend andack , since it significantly simplifies the
semantics. The ports are then mapped to constants which parameterize these general messages. Messages
send andack , like do anddone, carry the sequence of object identifiers in a given interaction.

The declaration of ports also includes rules in the associated rewrite theory. However, the treat-
ment for rule generation is different for modules and connectors since connectors declare contracts that
coordinate the interactions, that is, the message flow among the objects that represent an architecture in-
stance, also know as a topology. In the reminder of this section we will explain how rules are derived from
port declarations in modules and Section 3.3 will give a detailed explanation on how rules are derived from
port and coordination contracts declarations in a connector.

Let us focus then on port declarations in modules. There are four different port declaration possi-
bilities in modules which arise from combining synchronous and asynchronous communication with input
and output port interaction.

• When asynchronous inputport is declared in a CBabel component, two rules must be created: (i)
one specifying that sending a message to that port should trigger an internal behavior to that com-
ponent and (ii) another specifying that once that internal behavior is finished, an acknowledgment
message should be sent back to the component that stimulated that port.
Triggering a component’s internal behavior is represented by a component sending a messagedo
to itself. Once a component has finished performing its internal behavior it sends a messagedone
to itself which is then turned into an acknowledgment message.

• When anasynchronous inputport is declared, one rule should be added to the rewrite theory’s
rule set specifying that sending a message to that port should trigger that component’s internal
behavior.

• Declaring asynchronous outputport should add two rules to the associated rewrite theory’s rule
set. The first rule specifies that when a component isdoingone of its internal behaviors, a “service”
from another component may be requested through that port. Moreover, this request shouldblock
that port until an answer to that request arrives, thus unlocking that port, which is specified by a
second rewrite rule. The execution of that internal behavior is then considereddone. The effect of
locking and unlocking a port is captured by updating the status attributefor that port in the object
that represents the CBabel component instance holding that port.

• The declaration of anasynchronous outputport adds a rule to the rule set of the associated rewrite
theory. The rule specifies that once that port is stimulated the associated message can be uncondi-
tionally rewritten since asynchronous ports do not require acknowledgment messages and therefore
do not need the treatment we have described for synchronous output ports in the previous bullet.

Let us now formalize this prose. First note that the mapping from a CBabelcomponentport
declaration to the associated rewrite theory signature is the same for both modules and connectors. However
a different treatment is required for specifyingbehavior. As in our informal explanation above, in the
remainder of this section we will formalize how the rewrite theory signature is affected by a port declaration
in the associated CBabelcomponent, that is, either a CBabel module or a connector, and how the rule set
of the rewrite theory is affected by port declarations in the associated CBabelmodule. The formalization of
how rules are generated from port declarations andcoordination contractsin a CBabelconnectorwill be
given in Section 3.3.

Given a CBabel module declaration(n, V, I,O) or a connector declaration(n, V, I,O, c), with
n the component’s name identifier,V the variable declaration set,I the input ports declaration set,O
the output port declaration set, andc the coordination contract declaration, the signatureΣ of the rewrite
theory associated to the CBabel component includes: (i) for each port declarationp in I, a constantp of
sortPortInId , (ii) for each port declarationp in O, a constantp of sortPortOutId . The sortsPortInId
and PortOutId are subsorts ofPortId , the sort that parameterizes the generic messagessend , ack :
Oid PortId Interaction → Msg . The sortsPortId , PortInId , andPortOutId , together with messages
send andack are declared in the rewrite theoryCBABEL-CONFIGURATION, included inΣ.

Let us now formalize how port declarations in a CBabelmodulegive rise to rules in the associated
rewrite theory. One should consider the four possible combinations for port declarations informally given
above. Given a CBabel module declaration(n, V, I,O):

• The declaration of asynchronous inputport i in I gives rise to Rules 2 and 3 in the associated
rewrite theory rule setR:

rl send(ω, i, ι) < ω : n | A > ⇒ do(ω, i, ι) < ω : n | A > . (2)

rl done(ω, i, ι) < ω : n | A > ⇒ ack(ι) < ω : n | A > . (3)

whereω is the object identifier of the object that represents an instance of the CBabel module,ι is
the interaction, andA is the object’s attribute set.

• The declaration of anasynchronous inputport gives rise to Rules 2 and 4:

rl done(ω, i, ι) < ω : n | A > ⇒ < ω : n | A > . (4)

• The declaration of asynchronous outputporto ∈ O gives rise to Rules 5 and 6,

rl do(ω, o,none) < ω : n | o-status : unlocked , A >⇒ (5)

send(ω, o, [ω, o]) < ω : n | o-status : locked , A > .

rl ack([ω, o]) < ω : n | o-status : s,A >⇒ (6)

< ω : n | o-status : unlocked , A > done(ω, o,none) .

wheres is a variable of sortPortStatus, declared in the rewrite theoryCBABEL-CONFIGU-
RATION together with constantslocked , unlocked :→ PortStatus, and none is the unit of
Interaction.

• The declaration of anasynchronous outputport gives rise to Rule 7:

rl do(ω, o,none) < ω : n | A > ⇒ send(ω, o, [ω, o]) < ω : n | A > . (7)

Section 3.3 continues with the formalization of CBabel primitives, describing how coordination
contracts are formalized in rewriting logic.

3.3. Coordination Contracts

A coordination contract is a specification of the interaction flow inside a connector and may declaresequen-
tial, mutual exclusiveor guardedinteraction among ports. Asequentialcoordination contract specifies a
“short-circuit” between two ports, that is, given two ports agreeing in a sequential contract, one being an
input port and the other an output port, when the input port is unconditionally stimulated, the output port is
also stimulated. Amutual exclusioncoordination contract should be declared between two input ports and
specifies that either one or the other port participates in a given interaction. Aguardedcoordination contract
is declared relatingsynchronousinput and output ports. A guarded coordination contract has acondition, a
beforeblock and anafterblock. Once the input port is stimulated and the condition holds, the before block
is executed and the output port is stimulated. Once the answer to the output port stimulus arrives, the after
block is executed. However, if a message is sent to the input port and the guard condition doesnothold, that
message isqueuedand held until the guard condition turns true. Messages to the input port of a guarded
contract are also queued when the guard is still waiting for an acknowledgment message to its output port.

Before giving the contracts semantics, let us explain the intuition of the formalization. Asequen-
tial contract between an input port and an output port is a rule rewriting the message representing the port
stimulus to the input port to the message representing the output port, also pushing the pair formed by
the connector’s object identifier together with the output port into the interaction stack, to allow the cor-
rect acknowledgment when several output ports are linked to a single input port. The acknowledgment to a
synchronous output port, also specified by a rule, pops the top of the interaction and forewords the acknowl-
edgment to the object whose identifier is the first projection of the new top in the interaction stack. This
treatment handles1:1 or n:1 interaction styles, that is, when there is a link between one component and one

connector or several components and one connector. In the case when a1:n interaction style is needed, the
sequential contract can be used together with theparallel coordination contract, which means that when the
input port is unconditionally stimulated the connector’sn output ports are also stimulated. This gives rise
to a rule rewriting the message representing the stimulus to the input port ton messages representing the
stimulus to each of the output ports. If the output ports are synchronous, the treatment for then messages
representing the acknowledgments is to forward the first received, ignoring the others. There is no rule for
the acknowledgment message if the output port is asynchronous.

A mutual exclusioncoordination contract, between a synchronous input port and a synchronous
output port, has a semaphore semantics and is formalized by twonon-deterministicrules. Once a rule is
applied it selects a message from the configuration to be rewritten and the status attribute is set tolock
in the object that represents the connector, thus preventing the application of one of these two rules and
therefore the selection of another message to be rewritten. It is also specified by a rule the arrival of an
acknowledgment message to the object that represents the connector which sets its status tounlocked ,
therefore allowing the non-deterministic rules to be applied again.

A guardedcontract is formalized by three equations and two rules. One equation is a predicate that
evaluates the guard’s condition according to the set of attribute values in the object that represents the con-
nector. The other two equations represent thebeforeandafter actions, which are themselves compositions
of equations representing thebeforeandafter statements of the guarded contract. The first rule specifies
that once a message arrives to the input port, thebeforeequation will be applied to the object that represents
the connector setting its status attribute tolock and then asend message is sent to the output portif the
guard condition holds. Otherwise the message to the input port will simply waitunwrittenin configuration
either if the guard condition does not hold or if an acknowledgment message does not arrive to the output
port. This precisely keeps the effect ofholdinga message until the guard is ready to handle it in a way more
general than instantiating a queue datatype.

Let us now state these definitions in formal terms. Given a connector declaration(n, V, I,O, c),
with n the component’s name identifier,V the variable declaration set,I the input ports declaration set,
O the output port declaration set, andc a sequential contractdeclaration,c is a pair of ports,(i, o) with
the first projectioni ∈ I being an input port and the second projectiono ∈ O being an output port. The
declaration of the contractc gives rise to Rule 8 in the rule setR in the associated rewrite theory(Σ, E, R),

rl send(ω, i, ι) < ω : n | A > ⇒ send(ω, o, [ω, o] :: ι) < ω : n | A > . (8)

where the operations[,] : Oid PortOutId → OidPortIdPair and :: : Interaction Interaction →
Interaction are constructor operators for sortsOidPortIdPair andInteraction, respectively, with the sort
OidPortIdPair being a subsort ofInteraction, all declared in the rewrite theoryCBABEL-CONFIGURA-
TION, ω is the object identifier of the object that represents an instance of the CBabel connector,ι is the
interaction, andA is the object’s attribute set. When the parallel coordination contract is used Rule 8 has
onesend message for each output port on the right-hand side of the rule. If the output porto is synchronous
then Rule 9 is also added toR. When the parallel coordination contract is used, a conditional version of
Rule 9 is added, that forwards only thefirst acknowledgement message and disregards the forthcoming
ones. Rule 9 is not added ifo is asynchronous.

rl ack([ω, o] :: ι) < ω : n | A > ⇒ ack(ι) < ω : n | A > . (9)

Given a connector declaration(n, V, I,O, c), with n the component’s name identifier,V the vari-
able declaration set,I the input ports declaration set,O the output port declaration set, andc a mutual
exclusion contractdeclaration,c is a four tuple(i1, o1, i2, o2) with i1, i2 ∈ I ando1, o2 ∈ O. The decla-
ration of the contractc gives rise to a class attributestatus : PortStatus → Attribute declared in the
rewrite theoryCBABEL-CONFIGURATIONand used by each instanceω of classn. Rules 10, 11 and 12
are included inR,

rl send(ω, i1, ι) < ω : n | status : unlocked , A >⇒ (10)

< ω : n | status : locked , A > send(ω, o1, [ω, o1] :: ι) .

rl send(ω, i2, ι) < ω : n | status : unlocked , A >⇒ (11)

< ω : n | status : locked , A > send(ω, o2, [ω, o2] :: ι) .

rl ack([ω, o] :: ι) < ω : n |status : s,A >⇒ (12)

< ω : n | status : unlocked , A > ack(ι) .

whereω is the object identifier of the object that represents an instance of the CBabel connector,ι is the
interaction,A is the object’s attribute set, ands is a variable of sortPortStatus.

Given a connector declaration(n, V, I,O, c), with n the component’s name identifier,V the vari-
able declaration set,I the input ports declaration set,O the output port declaration set, andc a guarded
contractdeclaration,c is a five tuple(i, o, b, β, α) wherei ∈ I, o ∈ O, b is a boolean expression, withβ and
α being sequences of assignment and variable lookup statements or boolean expressions on elements ofV .
(We shall not give the detailed syntax and meaning of statements and expressions since they are straight-
forward and here we wish to focus on the meaning of the guarded contract. It suffices than to understandβ
andα as compositions of functions that give meaning to such statements and expressions.) The conditionb
of c gives rise to a function which is the composition of the statements inb. Moreover, an equation relates
the abstract functionopened? : Object → Bool to the function that is the meaning of the guard condition
expressionb. Functionsβ andα are represented by the functionsbefore, after : Object → Object , respec-
tively, declared inCBABEL-CONFIGURATION. The declarations ofβ andα give rise to two equations.
Each equation is a composition of functions representing the sequence of statements inβ andα. (Again,
they will not be shown here to keep the presentation focused on the contract’s meaning.) Finally, Rules 13
and 14 are added toR.

crl send(ω, i, ι) < ω : n | i-status : unlocked , A >⇒ (13)

before(< ω : n | i-status : locked , A >)
send(ω, o, [ω, o] :: ι)

if opened?(< ω : n | i-status : unlocked , A >) .

rl ack([ω, o] :: ι) < ω : n | i-status : locked , A >⇒ (14)

after(< ω : n | i-status : unlocked , A >) ack(ι) .

3.4. Application

A CBabel application module declares how the components of an architecture should be put together. It
may instantiate components and then link them together by their ports and bind their state variables. (See
Section 3.5.)

Formally, a CBabel application module is a triple(x, Y, L,B) wherex is the application module’s
name,Y is the set of instantiation declarations(ω, n) with ω an identifier representing a CBabel compo-
nent instance andn, also an identifier, representing a CBabel component;L is the set of link declarations
(ω1, o, ω2, i) with ωi an identifier representing an instance ofni, o an output port declared inn1 andi an
input port declared inn2; andB a set of binding declarations which will be formalized in Section 3.5.
A CBabel application module gives rise to a rewrite theory(Σ, E, R) such thatΣ includes a constant
x :→ Configuration andE includes Equation 15

eq x = instantiate-n1(ω1) . . . instantiate-nj(ωj) . (15)

where(ωi, ni) ∈ Y and1 ≤ j ≤ |Y |. Each link declaration inL gives rise to a Rule 16 inR.

rl send(ω1, o, ι) ⇒ send(ω2, i, ι) . (16)

The formalization of bind declarations is given in Section 3.5, next, since they are related to state
required variable declarations, subject of that section.

3.5. State Required Variables

State required variables allows for a shared memory communication between a CBabel connector and a
CBabel component, that is, if a state variable changes in the connector, the other component’s variable
bound to the connector’s state variable should immediately notice this change, and vice-versa. A bind
declaration should be done in the application module relating a variable in a component with a state variable
in a connector.

State required variables are mapped to pairs composed by a value and a status information which
could bechanged or unchanged . Bind declarations in the application module are mapped to equations that
specify the synchronization between the bound variables. Recall from Section 2 that equations are applied
before the rules, therefore the state variables will be synchronized before the rules for messages are applied.

Let us formalize this. Given a CBabel component declaration(n, V, I,O), a state required variable
declaration is a pairstate(v, t) ∈ V . The declaration of a state required variable in a CBabel component
gives rise to an attribute declaration in the class declarationclass n | v : SateRequired in the signatureΣ
of the associate rewrite theory(Σ, E, R), whereSateRequired is a sort declared in the rewrite theoryC-
BABEL-CONFIGURATIONincluded inΣ, together with constructorsst : T Status → StateRequired , for

each primitive typeT of CBabel, withStatus declared in the rewrite theoryCBABEL-CONFIGURATION
with constructorschanged , unchanged :→ Status.

A bind declaration in a CBabel application module is a five tuple(ω1, v1, ω2, v2, t) whereω1 and
ω2 are identifiers representing CBabel componentsn1 andn2, respectively, withrequired(v1, t) ∈ Vn1 ,
(v2, t) ∈ Vn2 . A bind declaration gives rise to Equations 17 and 18 inE

eq < ω1 : n1 | v1 : st(V1, changed), S1 > < ω2 : n2 | v2 : V2, S2 > = (17)

< ω1 : n1 | v1 : st(V1, unchanged), S1 > < ω2 : n2 | v2 : V1, S2 > .

ceq < ω1 : n1 | v1 : st(V1, unchanged), S1 >< ω2 : n2 | v2 : V2, S2 > = (18)

< ω1 : n1 | v1 : st(V2, unchanged), S1 >< ω2 : n2 | v2 : V2, S2 >

if V1 6= V2 .

wheren1 andn2 are the CBabel component identifiers with instancesω1 andω2, respectively, the construc-
torsst : T Status → StateRequired for StateRequired are declared for each primitive typeT of CBabel in
theCBABEL-CONFIGURATIONrewrite theory included in the signature of the rewrite theory associated
with the CBabel application module where the bind declarations are given,V1 andV2 are variables of type
t, andS1 andS2 are the attribute sets ofω1 andω2 respectively.

4. Executing and Verifying CBabel Descriptions in Maude

The CBabel Tool2 is a prototype executable environment for CBabel that implements the CBabel’s rewrit-
ing logic semantics given in Section 3 and allows the execution and verification of CBabel descriptions in
the Maude system. The CBabel Tool prototype is a script that calls the Maude system to: (i) given CBabel
components descriptions and the rewriting logic semantics presented in Section 3, produces Maude object-
oriented modules for each CBabel component, and (ii) load the Maude system with the modules created
in (i). Note that in this prototype execution and verification is done at the level of Maude specifications.
It is part of our future work to integrate the CBabel Tool in Full-Maude [6], which will allow a complete
definition of a proper command interface for the CBabel Tool. One such command example is a verification
command that understandscomponentsandports, and notobjectsandmessagesas the tool currently does.

In this section we will use the CBabel Tool to prove properties about producer-consumer-buffer
architectures presented in Section 1. (Not all verifications will be shown due to space limitations but they
are available at CBabel Tool web site.) We have at least two problems in the producer-consumer-buffer
application: (i) race condition, and (ii) buffer overflow and underflow, that is the producer should not add
more items than the buffer may hold and the consumer should not remove an item from an empty buffer.
Figure 5 shows the execution of the CBabel Tool with the architectures from Figures 1, 2, 3 and 4.

$./ctp -m cbabel/producer.cbabel -m cbabel/consumer.cbabel
-m cbabel/buffer.cbabel -m cbabel/default.cbabel -m cbabel/mutex.cbabel
-m cbabel/guard-get.cbabel -m cbabel/guard-put.cbabel
-a cbabel/pc-default.cbabel -a cbabel/pc-mutex.cbabel
-a cbabel/pc-mutex-guards.cbabel

CBabel Tool Prototype

Modules: cbabel/producer.cbabel cbabel/consumer.cbabel
cbabel/buffer.cbabel cbabel/default.cbabel cbabel/mutex.cbabel
cbabel/guard-get.cbabel cbabel/guard-put.cbabel

Application: cbabel/pc-default.cbabel cbabel/pc-mutex.cbabel
cbabel/pc-mutex-guards.cbabel

running Maude...

\||||||||||||||||||/
--- Welcome to Maude ---

/||||||||||||||||||\
Maude 2.1.1 built: Jun 15 2004 12:55:31

Copyright 1997-2004 SRI International
Sat Sep 4 18:12:22 2004

Maude>

Figure 5: Running the CBabel Tool

The Maude commandshow module <module> . pretty-prints the module<module> into the scre-
en. Figure 6 shows the rewrite theory generated from the CBabel connectorMUTEX, given in Figure 2. The
rules labeledMUTEX-mutex-out1 andMUTEX-mutex-out2 are instances of Rule 12 in Section 3, and rules
labeledMUTEX-mutex-in1 andMUTEX-mutex-in2 are instances of Rules 10 and 11 in Section 3, respectively.

2The CBabel Tool prototype may be downloaded fromhttp://www.ic.uff.br/˜cbraga/vas/cbabel-tool/ .

Maude> show module MUTEX .
mod MUTEX is

including CBABEL-CONFIGURATION .
op MUTEX : -> Cid .
op instantiate-MUTEX : Oid -> Object .
op mutex-in1 : -> PortInId [ctor] .
op mutex-in2 : -> PortInId [ctor] .
op mutex-out1 : -> PortOutId [ctor] .
op mutex-out2 : -> PortOutId [ctor] .
eq instantiate-MUTEX (O:Oid) = < O:Oid : MUTEX | none, status : unlocked > .
rl < O:Oid : MUTEX | status : S:PortStatus, AS:AttributeSet > ack ([O:Oid,

mutex-out1] :: IT:Interaction) => < O:Oid : MUTEX | status : unlocked,
AS:AttributeSet > ack (IT:Interaction) [label MUTEX-mutex-out1] .

rl < O:Oid : MUTEX | status : S:PortStatus, AS:AttributeSet > ack ([O:Oid,
mutex-out2] :: IT:Interaction) => < O:Oid : MUTEX | status : unlocked,
AS:AttributeSet > ack (IT:Interaction) [label MUTEX-mutex-out2] .

rl < O:Oid : MUTEX | status : unlocked, AS:AttributeSet > send (O:Oid,
mutex-in1, IT:Interaction) => < O:Oid : MUTEX | status : locked,
AS:AttributeSet > send (O:Oid, mutex-out1, [O:Oid, mutex-out1] ::
IT:Interaction) [label MUTEX-mutex-in1] .

rl < O:Oid : MUTEX | status : unlocked, AS:AttributeSet > send (O:Oid,
mutex-in2, IT:Interaction) => < O:Oid : MUTEX | status : locked,
AS:AttributeSet > send (O:Oid, mutex-out2, [O:Oid, mutex-out2] ::
IT:Interaction) [label MUTEX-mutex-in2] .

endm

Figure 6: Rewriting logic semantics for the MUTEXconnector

To execute or verify an architecture one should manually provide yet another module since the
architecture description does not give any specification regarding the internal behavior of the components,
the initial state of the system nor the properties that should be verified. Moreover, one could also make ver-
ifications using different process scheduling strategies that are, of course, not described at the architecture
level. We have coded such a module in the object-oriented rewrite theoryVER-PCBwhich is presented in
Figure 7.

omod APP is inc PC-DEFAULT . endom

omod VER-PCB is
inc APP . inc MODEL-CHECKER .
subsort Configuration < State .
rl done(prod, producer-put, IT) => do(prod, producer-put, none) .
rl done(cons, consumer-get, IT) => do(cons, consumer-get, none) .
rl do(O, buffer-put, IT) < O : BUFFER | items : N, MAXITEMS : M, AS >

=>
done(O, buffer-put, IT)
< O : BUFFER | items : (if s(N) > s(M) then s(M) else s(N) fi),

MAXITEMS : M, AS > [label buffer-do-put] .

rl do(O, buffer-get, IT) < O : BUFFER | items : N, MAXITEMS : M, AS >
=>
done(O, buffer-get, IT)
< O : BUFFER | items : (if (N - 1) < -1 then -1 else (N - 1) fi),

MAXITEMS : M, AS > [label buffer-do-get] .
op raceCond : -> Prop .
eq send(buff, buffer-put, IT1) send(buff, buffer-get, IT2)

C:Configuration |= raceCond = true .
op initial : -> Configuration .
eq initial = topology

do(cons, consumer-get, none) do(prod, producer-put, none) .
endom

Figure 7: The verification and execution module for the producer-consumer-buffer architectures

The moduleVER-PCB first includes the modulesMODEL-CHECKERand APP, that includes module
PC-DEFAULT. The moduleAPP should be redefined to include the CBabel application module that will be
verified. This is a simple “interface” to allow us to reuse the verification module which will be properly
defined in the integration of the CBabel Tool with Full-Maude. After the inclusion declaration the sort
Configuration is declared to be a subsort of sortState , which means that the “soup” of objects and mes-
sages will be the states that compose the model that the model checker will verify. Next, theobservable
internal behavior of the objects, that is, a “minimum” specification of the internal behavior necessary to
perform the verification task, are specified as four rules. They define that theprod and cons instances
of PRODUCERandCONSUMER, respectively, must produce and consumecontinuouslyand that theBUFFERin-
stancebuff must increment or decrement its ownitems variable whenever it receives thebuffer-put

or buffer-get messages, respectively. For the buffer rule we use a technique calledabstract interpreta-
tion [18]. We need not to use all integers to represent the buffer items. The values−1, MAXITEMS + 1, and
the range[0, MAXITEMS] suffice. (Actually the range itself could be represented as a constant.) Therefore we
only allow the buffer items to be increased up toMAXITEMSplus one and to be decreased down to−1. Next
theraceCond proposition is declared, representing the race condition property, and is defined as an equation

that specifies it as a configuration containing messagesbuffer-put andbuffer-get simultaneously in the
“soup”. The initial state of the system was declared by the constant operatorinitial , declared and speci-
fied in the application modulePC-DEFAULT, defined by an equation as the constant operatortopology plus
an initial request to thePRODUCERinstanceprod and to theCONSUMERinstancecons .

After enteringVER-PCBin the Maude system one may run the model checker by executing a reduce
command together with a formula in linear temporal logic [7]. Thus, if one reduces the formulainitial |=

[]˜raceCond , which means that is always true that a race condition will not happen, a counter-example is
produced, that is, a path witch contains a race condition state is shown. This is reproduced in Figure 8. (The
Maude output has been edited since the counter-example is 14 Kbytes long.) Using the search command

reduce in VER-PCB : modelCheck(initial, []˜ raceCond) .
rewrites: 76 in 0ms cpu (10ms real) (˜ rewrites/second)
result ModelCheckResult: counterexample(...

{< buff : BUFFER | MAXITEMS : 2,items :
-1 > < cons : CONSUMER | consumer-get-status: locked > < default1 : DEFAULT
| status : unlocked > < default2 : DEFAULT | status : unlocked > < prod :
PRODUCER | producer-put-status: locked > send(buff, buffer-get, [default2,
def-out] :: [cons,consumer-get]) send(buff, buffer-put, [default1,def-out]
:: [prod,producer-put]),’BUFFER-send-buffer-get} ...)

Figure 8: The model checker counter-example for race condition in the PC-DEFAULTapplication.

one is able to show states where the buffer limits are violated. Figure 9 shows the execution of the search
looking for the shortest path to the underflow state.

search [1] in VER-PCB : initial =>* C < buff : BUFFER | AS,MAXITEMS : N’:Int,
items : N > such that N < 0 = true .

Solution 1 (state 27)
states: 28 rewrites: 81 in 0ms cpu (0ms real) (˜ rewrites/second)
C --> < cons : CONSUMER | consumer-get-status: locked > < default1 : DEFAULT |

status : unlocked > < default2 : DEFAULT | status : unlocked > < prod :
PRODUCER | producer-put-status: unlocked > do(prod, producer-put, none)
done(buff, buffer-get, [default2,def-out] :: [cons,consumer-get])

AS --> (none).AttributeSet
N’:Int --> 2
N --> -1

Figure 9: Searching for an overflow state in PC-DEFAULTapplication.

As already mentioned in the Section 1, to solve the race condition problem we use a mutual ex-
clusion contract to coordinate the access from the producer and the consumer to the buffer. This leads
to the example presented in Figure 2 implemented in the object-oriented rewrite theoryPC-MUTEXalready
introduced in Maude System. To be able to execute the model checker in this new architecture one must
first redefines the moduleVER-PCBchanging the modulePC-DEFAULTfor PC-MUTEXin theAPPmodule. After
entering the redefined moduleVER-PCB in the Maude system, one may execute the model checker again to
show that now is always true that a race condition does not happen (The Maude output is not shown due to
its simplicity and the paper space limitations.). Although solving the race condition, the problems of buffer
overflow and underflow still exist in this architecture.

The architecturePC-MUTEX-GUARDS(Figure 3) solves both problems with a mutual exclusive and
guard contracts. One must now redefine the moduleVER-PCB changing theAPP module to include the
object-oriented rewrite theoryPC-MUTEX-GUARDS. The searches and model checking in Figure 10 show that
this new architecture solves the race condition problemandthe buffer overflow and underflow problems.

Finally, to verify the architectures with asynchronous output port declarations in the producer and
consumer modules one must run the CBabel Tool with the asynchronous descriptions for these modules as
parameters together with applications that include the new versions of the producer and consumer modules.
In the asynchronous version one must again manually provide a verification module. New rules for objects
behaviors and equation abstractions, specifying that both producer and consumer are now able to produce
or consume without waiting for any acknowledgment message.

Due space limitations we will not show here all the verifications for architectures with the asyn-
chronous version of thePRODUCERandCONSUMERmodules. Since in the producer-consumer-buffer example
all the properties are kept the same in both asynchronous and synchronous versions, we show in Figure 11
that in thePC-MUTEX-GUARDSapplication with asynchronous versions ofPRODUCERandCONSUMERthe race
condition and buffer bounded access problems will never occur.

To further exemplify the use of the CBabel Tool, we show how the Tic-Tac-Toe game can be
executed and verified in our tool, following the specification in [20] that illustrates how interaction design
patterns can be implemented with connectors and contracts.

search [1] in VER-PCB : initial =>* C send(buff, buffer-get, IT2) send(buff,
buffer-put, IT1) .

No solution.
states: 255 rewrites: 4476 in 130ms cpu (130ms real) (34430 rewrites/second)
==
search [1] in VER-PCB : initial =>* C < buff : BUFFER | AS,MAXITEMS : N’:Int,

items : N > such that N > N’:Int = true .

No solution.
states: 255 rewrites: 4731 in 130ms cpu (130ms real) (36392 rewrites/second)
==
search [1] in VER-PCB : initial =>* C < buff : BUFFER | AS,MAXITEMS : N’:Int,

items : N > such that N < 0 = true .

No solution.
states: 255 rewrites: 4731 in 130ms cpu (130ms real) (36392 rewrites/second)
==
reduce in VER-PCB : modelCheck(initial, []˜ raceCond) .
rewrites: 4481 in 130ms cpu (130ms real) (34469 rewrites/second)
result Bool: true

Figure 10: Searching and model checking in PC-MUTEX-GUARDSapplication.

search [1] in VER-PCB : initial =>* C send(buff, buffer-get, IT2) send(buff,
buffer-put, IT1) .

No solution.
states: 255879 rewrites: 17800025 in 520340ms cpu (520430ms real) (34208

rewrites/second)
==
search [1] in VER-PCB : initial =>* C < buff : BUFFER | AS,MAXITEMS : N’:Int,

items : N > such that N > N’:Int = true .

No solution.
states: 255879 rewrites: 18055904 in 678750ms cpu (679030ms real) (26601

rewrites/second)
==
search [1] in VER-PCB : initial =>* C < buff : BUFFER | AS,MAXITEMS : N’:Int,

items : N > such that N < 0 = true .

No solution.
states: 255879 rewrites: 18055904 in 695160ms cpu (695560ms real) (25973

rewrites/second)

Figure 11: Verification of PC-MUTEX-GUARDSapplication with asynchronous PRODUCERand
CONSUMER.

The CBabel architecture for the Tic-Tac-Toe game is given in Figure 12. The modulesPLAYER,
GAMEand DISPLAY specify the components’ interfaces. TheTURN-GUARD1and TURN-GUARD2connectors
enforce the alternation of each player in the game. This is accomplished by a simple protocol using two
guards and a turn variable, represented byg1Turn andg2Turn that are bound to each other in the application
module. TheOBSERVER, SPLITER andUPDATERimplement together theobserverpattern. Additionally, the
synchronization between the players, the game and the display is imposed by an interlocking mechanism
based on guards. Thus, a player will only be allowed to make his turn after the previous one has been
displayed, and in the same way, a display will only occur after a new turn is complete.

As already mentioned, to verify the architecture one should provide the module that specifies the
internal behavior of the components and the initial state of the system. Figure 13 shows the object-oriented
rewrite theoryVER-TTT for theTic-Tic-Toearchitecture.

The first three rules define that thep1 andp2 instances ofPLAYERmust runcontinuouslyand the
display instance ofDISPLAY, upon receiving anupdating message, simple transforms thedo message into
a done message. (The specific internal behavior of theDISPLAY module are not relevant). The next rule
defines the behavior of thegame instance ofGAME, which is similar to the previous ones but upon receiving
a gturn message it also must store the last player identification on itslastPlayer variable. Since CBabel
do not know nothing about objects and identifiers, to keep the information about the last player we provide
the operationoidRange that transforms an object identifier into an integer. This function is used in the
verification of the architecture. After that we provide one more equation to consume the acknowledgments
from theupTurnIn port ofupd instance ofUPDATERto theturnOut2 port ofsplit instance ofSPLITER since
the output portturnOut2 in theSPLITER is asynchronous and so does not expect acknowledgment. Finally
we declare the initial state of the system.

Once theVER-TTT is defined and imported into the Maude system one could perform verifications
on the architecture.

Figure 14 presents a search for a state wheregame receives agturn message from the same player
that made the last move. Since this search did not find any state, the alternation of players is preserved.

module DISPLAY { application TIC-TAC-TOE {
in port updating ; instantiate PLAYER as p1 ;

} instantiate PLAYER as p2 ;
instantiate TURN-GUARD1 as g1 ;

module GAME { instantiate TURN-GUARD2 as g2 ;
var int lastPlayer ; instantiate GAME as game ;
var int gScore ; instantiate DISPLAY as display ;
in port gturn ; instantiate SPLITER as split ;

} instantiate OBSERVER as obs ;
instantiate UPDATER as upd ;

module PLAYER {
out port turn ; link p1.turn to g1.g1TurnIn ;

} link p2.turn to g2.g2TurnIn ;
link g1.g1TurnOut to obs.obTurnIn ;

connector SPLITER { link g2.g2TurnOut to obs.obTurnIn ;
in port turnIn ; link obs.obTurnOut to split.turnIn ;
out port turnOut1 ; link split.turnOut1 to game.gturn ;
out port oneway turnOut2 ; link split.turnOut2 to upd.upTurnIn ;

link upd.update to display.updating ;
interaction {

turnIn > (turnOut1 | turnOut2) ; bind int g2.g2Turn to g1.g1Turn ;
} bind bool upd.upGo to obs.obGo ;

} bind int upd.upScore to game.gScore ;
}

connector TURN-GUARD1 { connector TURN-GUARD2 {
var int g1Turn = int(1) ; staterequired int g2Turn ;

in port g1TurnIn ; in port g2TurnIn ;
out port g1TurnOut ; out port g2TurnOut ;

interaction { interaction {
g1TurnIn > g2TurnIn >
guard(g1Turn == int(1)) { guard(g2Turn == int(2)) {

after { after {
g1Turn = int(2) ; g2Turn = int(1) ;

} }
} > g1TurnOut ; } > g2TurnOut ;

} }
} }

connector UPDATER { connector OBSERVER {
staterequired bool upGo ; var bool obGo = FALSE ;
staterequired int upScore ;

in port obTurnIn ;
in port upTurnIn ; out port obTurnOut ;
out port update ;

interaction {
interaction { obTurnIn >

upTurnIn > guard(obGo == FALSE) {
guard(upGo == TRUE) { after {

after { obGo = TRUE ;
upGo = FALSE ; }

} } > obTurnOut ;
} > update ; }

} }
}

Figure 12: Tic-Tac-Toe architecture

Two others properties must hold: (i) one turn must be finished before an update message is sent to
the display, that is, the updater should only update the display with the status changes; (ii) a new turn must
wait until the status of the former one is displayed. The searches in Figure 15 show that these two properties
are guaranteed by the architecture.

As a final remark on this section, let us comment on the execution times for our examples. The
computer used to perform the verifications was a Pentium III 1 GHz with 1 GB RAM. In the searches applied
to the asynchronous producer-consumer-buffer example, for each proposition, Maude searches 255,879 of
states in approximately 10 minutes, as opposed to a significantly smaller number of states, and therefore
verification times, for the synchronous cases. Also, both the producer-consumer-buffer application and Tic-
Tac-Toe game do not leave much room for parallelization and, therefore, a not so large number of rewrite
per second since Maude may reach up to millions of rewrites per second [5], incertain applications. A
more thorough profiling of the rewrite theories generated by the CBabel Tool is ongoing work.

5. Related Work

A broad study of the basic concepts of ADLs, their semantics and expressiveness is presented in [19]
and [15]. The advantages of having a formal semantics and mechanisms to perform formal verifications on
software architectures described by ADLs are also broadly discussed in the literature, for instance [19], [14]
and [8]. Many ADLs such as Rapide [11], Wright [1] and ACME [9] are related to, or are extensions of,

omod VER-TTT is
inc TIC-TAC-TOE .

rl done(p1, turn, IT) => do(p1, turn, none) .
rl done(p2, turn, IT) => do(p2, turn, none) .
rl do(display, updating, IT) => done(display, updating, IT) .

rl do(game, gturn, IT :: [O, turn])
< game : Game | lastPlayer : N:Int , AS > =>
done(game, gturn, IT :: [O, turn])
< game : Game | lastPlayer : oidRange(O) , AS > .

op oidRange : Oid -> Int .
eq oidRange(p1) = 1 .
eq oidRange(p2) = 2 .

eq ack([split, turnOut2] :: IT) = none .

op initial : -> Configuration .
eq initial = topology do(p1, turn, none) do(p2, turn, none) .

endom

Figure 13: The verification and execution module for the Tic-Tac-Toe game

search in VER-TTT : initial =>* C < game : GAME | lastPlayer : N:Int >
send(game, gturn, IT :: [O,turn])

such that oidRange(O) == N:Int = true .

No solution.
states: 819 rewrites: 13682 in 430ms cpu (500ms real) (31818 rewrites/second)

Figure 14: Searching for a violation in the alternation of players

existing formalisms and have their semantics expressed in process algebra. These ADLs usually have a
supporting environment to ease the modeling and, some of them, to help in the verification procedures.
For instance, ACME’s AcmeStudio allows the modeling of application in a graphical editor tool and also
permits some static and semantic verification on the described architectures.

Our approach has an interesting property of actually executing the CBabel semantics to do the
simulations, that is, rewriting a topology, and the verification, since the transformation from CBabel to
RWL is the actualsemanticsof CBabel. Moreover, the Maude object-oriented syntax provides an intu-
itive interpretation for translated CBabel components, which is of easy understanding for most software
designers.

Also, an important issue regarding the choice of RWL as underlying framework lies on the fact
that it provides anorthogonalhandling of sequential aspects of the system, given by equations, and its
concurrent behavior, given by rules. This claim is also made in [8], but they usetwo different frameworks,
namely equational logic and process algebra.

Additionally, the adoption of Maude allows the verifications techniques used by our approach to be
extended in many different aspects as new improvements are added to this environment, such as real-time
features and other verification tools, as mentioned in Section 1, beyond model checking.

6. Final Remarks

In this paper we have given a rewriting logic semantics for CBabel, a software architecture description
language. CBabel components are understood as rewrite theories, or more specifically, as object-oriented
modules is our Maude implementation. The rewriting logic semantics Maude implementation, together
with a few shell scripts to automate the process of loading modules into the Maude system, gave rise to the
CBabel Tool prototype, which allows CBabel software architecture descriptions to be executed and verified
as rewrite theories in Maude. We applied the CBabel Tool to four variations of the producer-consumer-
buffer example and verified the properties of race condition between the producer and consumer, and buffer
overflow and underflow.

An important aspect of our translation, that we believe is worth emphasizing, is itsmodularity.
Despite the fact that modularity is an important pragmatic property, we believe it will be quite relevant
in the context of architecture reconfiguration [10], an important concept in software architectures that is
part of our future work. Given a CBabel component, it can becompletelytranslated to rewriting logic
without any information about the other components in a given architecture description. The use ofdo
anddone messages helps in this matter. They allow theencapsulationof the treatment for locking and
unlocking ports inside the rewrite theory that represents a module. Otherwise, the rules that give semantics

search in VER-TTT : initial =>* C ack([obs,obTurnOut] :: IT1)
send(upd, update, IT2) .

No solution.
states: 819 rewrites: 13682 in 390ms cpu (550ms real) (35082 rewrites/second)
==
search in VER-TTT : initial =>* C send(display, updating, IT1)

send(obs, obTurnOut, IT2) .

No solution.
states: 819 rewrites: 13682 in 400ms cpu (540ms real) (34205 rewrites/second)

Figure 15: Searching for invalid Display update

to link declarations would be more complex than simply renaming messages: the information about the
communication mode of a given port would be necessary in order to lock or unlock a port.

To the best of our knowledge, our approach innovates by devising an executable environment,
which includes verification features, for a software architecture language based on its formal semantics.
There is, of course, much work ahead, which includes: (i) an integration with Full-Maude to allow a com-
plete definition of a command interface that understands software architecture terms such as components
and ports and not classes and objects. Also, the answer from the verification tool should be at that level;
(ii) our semantics allow one contract per connector. This choice was made to make the semantics simpler.
However architectural descriptions become much simpler if a connector is allowed to specify more than
one contract. This will be possible in future versions of the tool; (iii) the current concrete syntax of CBabel
in the CBabel Tool is very close to thenormal formused by the transformer in the implementation of the
CBabel Tool, and differs slightly from [21]. In future versions of the tool more flexible declarations will be
allowed; (iv) verify more complex architectural descriptions, such as the cruise control example [12]; (v)
apply and develop equational abstraction techniques [18] in the context of software architectures.

Acknowledgements Rademaker would like to thank FGV/EPGE for the partial support. Braga and Szta-
jnberg would like to acknowledge partial support from CNPq process PDPGTI 552192/02-3. Braga is par-
tially sponsored by CNPq process 300294/2003-4. Sztajnberg acknowledges partial support from FAPERJ
process APQ1 E26/171430-02 and Prociência.

References

[1] R. J. Allen and D. Garlan. Beyond definition/use: Architectural interconnection. InIDL Workshop, number 8 in ACM
SIGPLAN Notices, Vol. 29, pages 35–44, August 1994.

[2] C. Braga and A. Sztajnberg. Towards a rewriting semantics to a software architecture description language. In A. Caval-
canti and P. Machado, editors,Proceedings of WMF 2003, 6o. Workshop de Métodos Formais, Campina Grande,
Brazil, volume 95 ofENTCS, pages 148–168. Elsevier, 2003.

[3] R. Bruni and J. Meseguer. Generalized rewrite theories. InThirtieth International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science. Springer-Verlag, 2003.

[4] M. Clavel. Reflection in rewriting logic: metalogical foundations and metaprogramming applications. CSLI Publica-
tions, 2000.

[5] M. Clavel, F. Duŕan, S. Eker, N. Martı́-Oliet, P. Lincoln, J. Meseguer, and C. Talcott.Maude 2. SRI International and
University of Illinois at Urbana-Champaign,http://maude.cs.uiuc.edu , 2003.

[6] F. Durán. A Reflective Module Algebra with Applications to the Maude Language. PhD thesis, Universidad de Mlaga,
Escuela Tcnica Superior de Ingeniera Informtica, 1999.

[7] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gadducci and U. Montanari,
editors,Fourth Workshop on Rewriting Logic and its Applications, WRLA ’02, volume 71 ofElectronic Notes in
Theoretical Computer Science. Elsevier, 2002.

[8] M. F. Felix. Análise Formal de Modelos de Software Orientados por Abstrações Arquiteutrais. PhD thesis, Informatics
Department, PUC-RJ, Rio de Janeiro, Brazil, 2004. in portuguese.

[9] D. Garlan, R. Monroe, and D. Wile.Foundations of Component-Based Systems, chapter Acme: Architectural Descrip-
tions of Component-Based Systems, pages 47–68. Cambridge Univ. Press, 2000.

[10] O. Loques, A. Sztajnberg, J. Leite, and M. Lobosco. On the integration of meta-level programming and configura-
tion programming. InReflection and Software Engineering (special edition), volume 1826 ofLecture Notes in
Computer Science, pages 191–210, Heidelberg, Germany, June 2000. Springer-Verlag.

[11] D. C. Luckham and et al. Specification and analysis of system architecture using rapide.IEEE Transactions on Software
Engineering, 21(4):336–355, April 1995.

[12] J. Magee and J. Kramer.Concurrency: state models & Java programs. John Wiley & Sons, Inc., 1999.

[13] N. Mart́ı-Oliet and J. Meseguer.Handbook of Philosophical Logic, volume 61, chapter Rewriting Logic as a Logical
and Semantic Framework. Kluwer Academic Publishers, second edition, 2001.http://maude.cs.uiuc.
edu/papers .

[14] N. Medvidovic, D. Rosdemblum, D. F. Redmiles, and J. E. Robbins. Modeling software architectures in the unified
modeling language.ACM Transactions on Software Engineering and Methodology, 11(1):2–57, 2002.

[15] N. Medvidovic and R. N. Taylor. A framework for classifying and comparing architecture description languages. In
Proceedings of the 6th European Software Engineering Conference, Zurich, Suia, 1997.

[16] J. Meseguer. Conditional rewriting as a unified model of concurrency.Theoretical Computer Science, 96(1):73–155,
April 1992.

[17] J. Meseguer. Membership algebra as a semantic framework for equational specification. In F. Parisi-Presicce, editor,
WADT’97, volume 1376, pages 18–61. Springer, 1998.

[18] J. Meseguer, M. Palomino, and N. Martı́-Oliet. Equational abstractions. In F. Baader, editor,Automated Deduction -
CADE-19. 19th International Conference on Automated Deduction, Miami Beach, FL, USA, July 28 - August 2,
2003, Proceedings, volume 2741 ofLecture Notes in Computer Science. Springer-Verlag, 2003. Submitted for
publication, January 2003.

[19] M. Shaw and D. Garlan.Software architecture: perspectives on an emerging discipline. Prentice-Hall Inc., EUA, 1996.

[20] A. Sztajnberg, M. Lobosco, and O. Loques. Configurando protocolos de intera cão na abordagem R-Rio. Inanais do
XIII Simṕosio Brasileiro de Engenharia de Software, pages 29–45, Florianópolis, Brasil, Outubro 1999.

[21] A. Sztajnberg and O. Loques. Reflection in the r-rio environment. InProceedings of the Middleware’2000 Workshop
on Reflective Middleware, Palisades, NY, EUA, April 2000.

