
Alexandre Rademaker

A Proof Theory for Description Logics

TESE DE DOUTORADO

Thesis presented to the Postgraduate Program in Informatics
of the Departamento de Informática, PUC–Rio as partial
fulfillment of the requirements for the degree of Doutor em
Informática.

Advisor: Prof. Edward Hermann Haeusler

Rio de Janeiro
Março 2010

Alexandre Rademaker

A Proof Theory for Description Logics

Thesis presented to the Postgraduate Program in Informatics,
of the Departamento de Informática do Centro Técnico
Cient́ıfico da PUC-Rio, as partial fulfillment of the require-
ments for the degree of Doutor. Approved by the following
commission:

Prof. Edward Hermann Haeusler
Advisor

Department of Informática — PUC–Rio

Prof. Luiz Carlos Pinheiro Dias Perreira
PUC–Rio

Prof. Marco Antonio Casanova
PUC–Rio

Prof. Mario Roberto Folhadela Benevides
UFRJ

Prof. Valéria de Paiva
Cuil, Inc

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro — Março 30, 2010

All rights reserved.

Alexandre Rademaker

Alexandre Rademaker graduated from Universidade Federal
do Rio de Janeiro in Computer Science (2001). He specialized
at Fundação Getulio Vargas in Business. He then obtained a
Master Degree at Universidade Federal Fluminense in Com-
puter Science (2005). He has experience in Computer Science,
focusing on Theory of Computer Science, Logics, Knowledge
Representation and Reasoning, acting on the following sub-
jects: description logic, proof theory, ontologies and category
theory.

Ficha Catalográfica
Rademaker, Alexandre

A proof theory for description logics / Alexandre Rade-
maker; advisorem Qúımica: Edward Hermann Haeusler. –
2010.

117 f: il. ; 30 cm

1. Tese (doutorado) – Pontif́ıcia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2010.

Inclui bibliografia

Informática – Teses. 1. Teoria da Prova. Cálculo de
Sequentes. Dedução Natural. 2. Lógicas descritivas. I.
Haeusler, Edward Hermann. II. Pontif́ıcia Universidade
Católica do Rio de Janeiro. Departamento de Informática.
III. Title.

CDD: 004

Acknowledgments

To my parents, André e Silvia, my sisters, Andréa e Christianne, for

their comprehension. During the last four years I dedicated most of my time

to my research and studies, I couldn’t do it without their encouragement. I am

specially thankful to my wife, Carla, for her friendship and love.

To my advisor and friend, Edward Hermann Haeusler. I can’t describe

how much I learn with him. I can’t describe how pleasure is to work with him.

Thanks Hermann.

To Renato Fragelli from Fundação Getulio Vargas, who provided me

professional support during all my PhD studies.

Abstract

Rademaker, Alexandre; Haeusler, Edward Hermann. A Proof
Theory for Description Logics. Rio de Janeiro, 2010. 117p. DSc
Thesis — Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Description Logics (DLs) is a family of formalisms used to represent

knowledge of a domain. They are equipped with a formal logic-based

semantics. Knowledge representation systems based on description logics

provide various inference capabilities that deduce implicit knowledge from

the explicitly represented knowledge. In this thesis we investigate the Proof

Theory for DLs. We introduce Sequent Calculi and Natural Deduction for

some DLs (ALC, ALCQ). Cut-elimination and Normalization are proved

for the calculi. It is argued that those systems can improve the extraction

of computational content from DLs proofs for explanations purpose.

Keywords
Proof theory. Sequent Calculus. Natural Deduction. Description

Logics.

Resumo

Rademaker, Alexandre; Haeusler, Edward Hermann. A Proof
Theory for Description Logics. Rio de Janeiro, 2010. 117p. DSc
Thesis — Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Lógicas de Descrição são uma famı́lia de formalismos usada para repres-

entação de conhecimento de um domı́nio. Elas são equipadas com uma

semântica formal. Conhecimento representado em sistemas baseados em

lógicas de descrição oferecem várias capacidades de inferência para dedução

de conhecimentos impĺıcitos a partir dos explicitamente representados.

Nesta tese investigamos teoria da prova para DLs. Apresentamos Cálculos

de Sequentes e Deduções Naturais para algumas DLs (ALC, ALCQ). Elim-

inação do corte e normalização são provadas para os sistemas apresentados.

Argumentamos que tais sistemas podem melhorar a obtenção de conteúdo

computacional de provas em DLs, facilitando a geração de explicações.

Palavras-chave
Teoria da Prova. Cálculo de Sequentes. Dedução Natural. Lógicas

descritivas.

Contents

I Introduction 10

I.1 Description Logics 10

I.2 Motivation 10

I.3 What this thesis is about 13

I.4 How this thesis is organized 13

II Background 15

II.1 A Basic Description Logic 15

II.2 Individuals 17

II.3 Description Logics Family 18

II.4 Reasoning in DLs 19

II.5 Inference algorithms 20

II.6 ALC axiomatization 20

III The Sequent Calculus for ALC 22

III.1 A Sequent Calculus for logicALC 22

III.2 SCALC Soundness 25

III.3 The Completeness of SCALC 29

III.4 The cut-elimination theorem 30

IV Comparing SCALC with other ALC Deduction Systems 42

IV.1 Comparing SALC with the Structural Subsumption algorithm 42

IV.2 Obtaining counter-models from unsuccessful proof trees 43

V A Natural Deduction for ALC 56

V.1 The NDALC System 57

V.2 NDALC Soundness 58

V.3 NDALC Completeness 61

V.4 Normalization theorem for NDALC 62

VI Towards a proof theory for ALCQI 69

VI.1 ALCQI Introduction 69

VI.2 The Sequent Calculus for ALCQI 70

VI.3 SCALCQI Soundness 72

VI.4 On SCALCQI Completeness 76

VI.5 A Natural Deduction for ALCQI 77

VI.6 NDALCQI Soundness 78

VII Proofs and Explanations 81

Contents 8

VII.1 Introduction 81

VII.2 An example of Explanations from Proofs in SCALC 86

VII.3 Explaining UML in NDALCQI 87

VIII A Prototype Theorem Prover 91

VIII.1 Overview of the Maude System 91

VIII.2 A Prototype Theorem Prover 93
The Logical Language 93

The Sequent Calculus 95

VIII.3 The SCALC System 97
The SC[]

ALC System Implementation 99

The Interface 101

Defining Proof Strategies 105

IX Conclusion 108

IX.1 Contributions 108

IX.2 Future Work 110

List of Figures

III.1 The System SCALC: structural rules 24
III.2 The System SCALC: logical rules 24

IV.1 The System SC[]ALC 46

V.1 The Natural Deduction system for ALC 57

VI.1 The System SCALCQI : the axioms 71
VI.2 The System SCALCQI : structural rules 71
VI.3 The System SCALCQI : u, t and ¬ rules 72
VI.4 The system SCALCQI : ∀, ∃, ≤, ≥ and inverse rules 73
VI.5 The inclusion diagrams for ≤ and ≥ over t and u. The arrow

A→ B means A v B. 75
VI.6 The Natural Deduction system for ALCQI 79

VII.1 Tableaux proofs 83
VII.2 Sequent Calculus proofs 84
VII.3 Natural Deduction proofs 85
VII.4 UML class diagram 87
VII.5 The ALCQI theory obtained from the UML diagram on

Figure VII.4 88

VIII.1 An example of a proof in the implementation of SCALC 97

I
Introduction

I.1 Description Logics

Description Logics (DLs) are quite well-established as underlying logics

for Knowledge Representation (KR). Part of this success come from the fact

that it can be seem as one (logical) successor of Semantics Networks [52],

Frames [48] and Conceptual Graphs [65] and as well as, an elegant and

powerful restriction of FOL by guarded prefixes, that also leads to a straight

interpretation into the K propositional modal logic.

The core of the DLs is the ALC description logic. In a broader sense, a

Knowledge Base (KB) specified in any description logic having ALC as core is

called an Ontology. In this thesis we will not take any ontological1 discussion on

the choice for this terminology by the computer science community. Moverover,

we are not interested in the technological concerns around Ontologies, the Web

or the fact that there is a XML dialect for writing Ontologies, just named

OWL [32]. For us, a DL theory presentation, that is, a set of axioms in the

DL logical language, and, an OWL file containing the same set of axioms is

the same KB.

Description Logics is a family of formalisms used to represent knowledge

of a domain. In contrast with others knowledge representation systems, De-

scription Logics are equipped with a formal, logic-based semantics. This logic-

based semantics provides to systems based on it various inference capabilities

to deduce implicit knowledge from the explicitly represented knowledge.

I.2 Motivation

Research in DL, since the beginning, was oriented to the development of

systems and to their use in applications. In the first half of the 1980’s several

systems were developed including KL-ONE [11] and KRYPTON [10], only to

mention two. They were called first generation DL systems. Later, in the second

1In the philosophical sense.

Chapter I. Introduction 11

half of 1980’s, the second generation of DL systems appear, the BACK [37],

CLASSIC [9] and LOOM [41] systems.

In the last years several DL systems have been developed incorporating

different DL fragments but similar with respect to the underlying reasoning

algorithm. Nowadays, DL has good reasoners from the point of view of provid-

ing yes/no answers or various inference tasks like subsumption of concepts (see

Chapter II) or classification 2. We mention the open-source Pellet [63], Racer

Pro [33] and Fact [67]. 3

The first DL systems implement structural subsumption algorithms [61].

The basic idea underlying structural subsumption is to transform terms into

canonical normal forms, which are then structurally compared. Structural

subsumption algorithms are therefore also referred to as normalize-compare

algorithms. There is one important drawback of normalize-compare algorithms.

That is, in general it is straightforward to prove the correctness of such

algorithms but there is no method for proving their completeness [51].

As far as we know, the most well-known existing DL reasoners implement

variations of Tableaux proof procedure for DL [60, 24, 23]. As pointed in

[51], Tableaux procedures for computing subsumption of concepts had the

advantage of providing good basis for theoretical investigations. Not only was

their correctness and completeness easy to prove, they also allowed a systematic

study of the decidability and the tractability of different DL dialects. On the

other hand, the main disadvantage of tableaux-based algorithms is that they

are not constructive but rather employ refutation techniques. That is, in order

to prove α v β, it is proved that the concept α u ¬β is not satisfiable (see

Chapter II).

As claimed by [43], the use of Description Logics by regular users, that

is, non-technical users, would be wider if the computed inferences could be

presented as a natural language text – or any other presentation format at the

domain’s specification level of abstraction – without requiring any knowledge

on logic to be understandable.

Despite the higher efficiency of the recent available DL systems they do

not provide to ontology engineers a good support for explanations on their

two main uses, namely, answering whether a subsumption holds or not, and,

a classification result.

Some works ([43, 44, 40]) describe methods to extract explanations from

DL-Tableaux proofs. Particularly, [21] describes the explanation extraction

2The classification checks subsumption between the terms defined in the terminology and
computes the subsumption hierarchy of them.

3A possible outdated list is maintained in the Description Logics website http://dl.kr.

org/.

http://dl.kr.org/
http://dl.kr.org/

Chapter I. Introduction 12

in quite few details, making impossible a feasible comparison with [44, 40].

In [7], for example, it is described a Sequent Calculus (SC) obtained by a

standard transformation from Tableaux into SC systems applied to the DL-

tableaux described in [60]. [38] presents also a Resolution procedure for DL

but does not address explanation extraction. It is worth noticing that the DL-

tableaux do not implement non-analytic cuts, and hence proof resulted from

this transformation is a cut-free proof. Moreover, even when dealing with the

TBOX (see Chapter II) the SC just discussed strongly deals with individuals,

the ABOX aspect of an Ontology.

Simple Tableaux procedure are those not able to implement non-analytic

cuts. The Tableaux procedures used for ALC are simple. It is also known that

Simple Tableaux cannot produce always short proofs, 4 that is, polynomially

lengthy proofs, concerning the combined length5 of its conclusion and set of

(used) axioms from the Ontology. This is an easy corollary of the theorem that

asserts that Simple Tableaux as well Resolution cannot produce short proofs for

the Pigeonhole Principle (PHP) [36]. PHP is easily expressed in propositional

logic, and hence, is also easily expressed in ALC. On the other hand, Sequent

Calculus (SC) (with the cut rule) has short proofs for PHP. In [31, 27] it is

shown, distinct, SC proof procedures that incorporate mechanisms that are

somehow equivalent to the cut-rule. Anyway, both articles show how to obtain

short proof, in SC, for the PHP. We believe that super-polynomial proofs, like

the ones generated by simple Tableaux, cannot be considered as good sources

for text generation. The reader might want to consider that only the reading

of the proof itself is a super-polynomial task regarding time complexity.

The final consideration worth of mentioning regarding a motivation to

obtain a Natural Deduction system for ALC, despite providing a variation

of themes, is the possibility of getting ride on a weak form of the Curry-

Howard isomorphism in order to provide explanations with greater content.

This last affirmative takes into account that the reading (explanatory) content

of a proof is a direct consequence of its computational content. This is discussed

in Chapters V and VII.

A last observation lies on the fact that allowing this incremental proof-

theoretical design of systems to DL we obtain a uniform specialization of the

general proof procedure for NDALC.

4If we consider the assumption that NP 6= CONP .
5Number of symbols.

Chapter I. Introduction 13

I.3 What this thesis is about

In this thesis, we present two deduction systems forALC 6 andALCQI 7,

a sequent calculus and a natural deduction system. The first motivation for

developing such systems is the extraction of computational content of ALC
and ALCQI proofs. More precisely, these systems were developed to allow

the use of natural language to render a Natural Deduction proof. The sequent

calculi were intermediate steps towards a Natural Deduction Systems [19].

Our main motivation to develop such systems are that natural language

rendering of a Natural Deduction proofs is worthwhile in a context like proof

of conformance in security standards [22]. The research reported on this thesis

started in the context of a joint project between PUC–Rio TecMF Lab and

Modulo Security S.A.

Our Sequent Calculus is also compared with other approaches like

Tableaux [60] and the Sequent Calculus for ALC [28, 45, 6] based on this very

Tableaux. In fact, our system does not use individual variables (first-order

ones) at all. The main mechanism in our system is based on labeled formulas.

The labeling of formulas is among one of the most successful artifacts for

keeping control of the context in the many existent quantification in logical

system and modalities. For a detailed reading on this approach, we point out

[56, 35, 57, 58, 29].

Our Sequent Calculi systems argue in favour of better explanation

schemata obtained from proofs, regarding those obtained from a ALC-
Tableaux. Both systems do not use individuals, producing a purely conceptual

reasoning for TBOX. Moreover, it is worth of mentioning that both systems

can also provide proofs with cuts, as opposed to the one presented in [43].

I.4 How this thesis is organized

Chapter II presents some background introducing DL languages and

semantics.

Chapter III presents the system SCALC, a sequent calculus for ALC and

proves that it is sound and complete. This chapter was originally published

in [53] and [55], where we proved that SCALC has the desirable property of

allowing the construction of cut-free proofs. That is, we prove that the cut

rule can be eliminated from the system SCALC without lost the completeness

and soundness.

6ALC means Attributive Language with Complements, a basic Description Logic.
7The Q in ALCQ means the introduction in the language of qualified number restriction

constructors.

Chapter I. Introduction 14

In Chapter IV, we compare SCALC with the Structural Subsumption

algorithm and the Tableaux for ALC. The comparison is made regarding: (1)

the proof construction procedure in Structural Subsumption algorithm and

SCALC; and (2) the ability of ALC-Tableaux to construct counter-models. The

results from this chapter were first published in [54].

In Chapter V we present the Natural Deduction for ALC named NDALC.

In this chapter, we also prove that NDALC is sound and complete. We also

proof the normalization theorem for NDALC. The results in this chapter were

published in [34].

In Chapter VI, we present the extensions of our Natural Deduction and

Sequent Calculus for ALC to ALCQI. We prove the soundness of both sys-

tems and some ongoing work regarding their completeness. In Chapter VII,

we present the motivation and some discussion about the extraction of explan-

ations from proofs. We compare proofs in Tableaux, Natural Deduction and

Sequent Calculi. Also in this chapter, we present our Natural Deduction for

ACLQI to reasoning over a UML diagram. The example helps us compare

how proofs in NDALCQI can be easier explain than proofs using Tableaux.

In Chapter VIII, we present a prototype theorem prover that implements

our Natural Deduction and Sequent Calculi systems. Finally, in Chapter IX,

we present some conclusions and further work.

II
Background

II.1 A Basic Description Logic

Description Logics is a family of knowledge representation formalisms

used to represent knowledge of a domain, usually called “world”. For that,

it first defines the relevant concepts of the domain – “terminology” – and

then, using these concepts, specify properties of objects and individuals of

that domain. Comparing to its predecessors formalisms, Description Logics

are equipped with a formal, logic-based semantics. Description Logics differ

each other from the constructors they provide. Concept constructors are used

to build more complex descriptions of concepts from atomic concepts and role

constructor to build complex role descriptions from atomic roles.

ALC is a basic Description Logics [1] and its syntax of concept descrip-

tions is as following:

φc → > | ⊥ | A | ¬φc | φc u φc | φc t φc | ∃R.φc | ∀R.φc

where A stands for atomic concepts and R for atomic roles. The concepts ⊥
and > could be omitted since they are just abbreviations for αu¬α and αt¬α
for any given concept description α.

The semantics of concept descriptions is defined in terms of an interpret-

ation I = (∆I , �I). The domain ∆I of �I is a non-empty set of individuals and

the interpretation function �I maps each atomic concept A to a set AI ⊆ ∆I

and for each atomic role a binary relation RI ⊆ ∆I ×∆I . The function �I is

Chapter II. Background 16

extended to concept descriptions inductive as follows:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

Knowledge representation systems based on description logics provide

various inference capabilities that deduce implicit knowledge from the expli-

citly represented knowledge. One of the most important inference services of

DL systems is computing the subsumption hierarchy of a given finite set of

concept descriptions.

Definition 1 The concept description D subsumes the concept description C,

written C v D, if and only if CI ⊆ DI for all interpretations I.

Definition 2 C is satisfiable if and only if there exists an interpretation I
such that CI 6= ∅.

Definition 3 C is valid or a tautology if and only if, for all interpretation I,

CI ≡ ∆I.

Definition 4 C and D are equivalent, written C ≡ D, if and only if C v D

and D v C.

We used to call C v D and C ≡ D terminological axioms. Axioms of

the first kind are called inclusions, while axioms of the second kind are called

equalities. If an interpretation satisfies an axiom (or a set of axioms), then we

say that is a model of this axiom (or set of axioms).

An equality axiom whose left-hand side is an atomic concept is a

definition. Definitions are used to introduce names for complex descriptions.

For instance, the axiom

Mother ≡ Woman u ∃hasChild.Person

associates to the description on the right-hand side the name Mother.

A finite set of definitions T where no symbolic name is defined more than

once is called a terminology or TBox. In other words, for every atomic concept

Chapter II. Background 17

A there is at most one axiom in T whose left-hand side is A. Given a T , we

divide the atomic concepts occurring in it into two sets, the name symbols

NT that occur on the left-hand side of some axiom and the base symbols BT
that occur only on the right-hand side of axioms. Name symbols are also called

defined concepts and base symbols primitive concepts. The terminology should

defines the name symbols in terms of the base symbols.

With the definitions of the previous paragraphs, we must also extend the

definitions of interpretations to deal with TBox. A base interpretation �I for T
is an interpretation just for the base symbols. An interpretation that interprets

also the name symbols is called an extension of �I . There are much more to

say about such extensions. For instance, whenever we have cyclic definitions

in a TBox the descriptive semantics given so far is not sufficient. In that case,

we usually work with fixpoint semantics, we cite [1] for a complete reference.

II.2 Individuals

Besides the TBox component, in a knowledge base we usually have to

describe individuals and assertions about them. We call the set of assertions

about individual in a knowledge base a world description or ABox. In a ABOX

we introduce individuals and describe their properties using the roles and

concepts introduced or defined in the TBox. We have two kind of formulas

to express assertions about individuals:

C(a) R(b, c)

The formula on the left is called concept assertion. It states that the individual

a belongs to the interpretation of the concept C. The formula on the right is

called role assertion that states that the individual c is a filler of the role R

for b. Following the typical example from [1], if Father is a concept name

and hasChild a role name, then we can have the following assertions about

individual named Peter, Paul, Mary:

Father(Peter) hasChild(Mary, Paul)

The meaning of the left assertion is that Peter is a father and the assertion

on the right says that Paul is a child of Mary.

Once more we have to extend the notion of interpretation in order to

provide semantics to ABoxes. Essentially, the interpretation I = (∆, �I) besides

mapping concepts to sets and roles to binary relations, also maps individual

names a to an element aI ∈ ∆I . We usually assume that distinct names denote

Chapter II. Background 18

distinct objects, this is called the unique name assumption (UNA). Formally,

if a and b are distinct names, then aI 6= bI .

An interpretation I satisfy the assertion C(a), if aI ∈ CI and the role

assertion R(a, b), if (aI , bI) ∈ RI . In that cases, we write:

I |= C(a) I |= R(a, b)

An interpretation satisfies an ABox if it satisfies each assertions on it,

that is, it is a model for the ABox. An interpretation that satisfies an ABox

with respect to a TBox whenever it is a model for both.

II.3 Description Logics Family

If we add to ALC more constructors, more expressivity power to describe

concepts and roles we obtain. Description logics are a huge family of logics, it is

not our goal to present and discuss all of them. We will describe in this section

only the extensions of ALC that we will deal in this thesis. For a complete

reference we indicate [1]. 1

Two of the most usefull extensions of ALC is ALCN and ALCQ. ALCN
includes number restrictions written as≤ nR or≥ nR where n ranges over non-

negative integers. ALCQ allows constructors for qualified number restrictions

of the form ≤ nR.C and ≥ nR.C. The semantics of those constructors are

given by the definitions below.

(≤ nR)I = {a ∈ ∆I | |{b | (a, b) ∈ RI}| ≤ n}

(≥ nR)I = {a ∈ ∆I | |{b | (a, b) ∈ RI}| ≥ n}

(≤ nR.C)I = {a ∈ ∆I | |{b | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n}

(≥ nR.C)I = {a ∈ ∆I | |{b | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n}

We name AL-languages using letters to indicate the allowed constructor:

AL[U][E][N][Q][C]

The AL language is a restriction of ALC without union of concept

(t), negation is only allowed to atomic concepts and limited existential

quantification, that is, existential quantification only over > concept (∃R.>).

The U stands for union of concepts, E for full existencial quantification, N for

number restrictions, Q for qualified number restrictions and C for full negation

of concepts (not only atomics ones).

1We also point to the Description logics website at http://dl.kr.org/.

http://dl.kr.org/

Chapter II. Background 19

Taking into account the semantics, some of these languages are equi-

valent. For example, the semantics forces the equivalent between C t D ≡
¬(¬C u ¬D) and ∃R.C ≡ ¬∀R.¬C. That is, union and full existential quan-

tification can be expressed using negation and vice versa. That is why we use

ALC instead of ALUE and ALCN instead of ALUEN . One can also observe

that ALCN is superseded by ALCQ. That is, if we limit the qualified number

restrictions of ALCQ to the > concept allowing only ≤ nR.> and ≥ nR.>,

we obtain ALCN .

As said before, description logics are a huge family of formalisms.

Much more constructors were introduced in the basic ALC to express: role

constructors; concrete domains; modal, epistemic and temporal operators;

fuzzy and probabilities to express uncertain or vague knowledge to cite just

some of them [1]. Nevertheless, the languages presented so far will be sufficient

for this thesis.

II.4 Reasoning in DLs

A knowledge base – TBox and ABox – equipped with its semantics

is equivalent to a set of axioms in first-order predicate logic. Thus, as said

before, like any other set of axioms, it contains implicit knowledge that logical

inferences can make explicit.

When we are constructing a TBox T , by defining new concepts, possibly

in terms of others that have been defined before, it is important to enforce

the consistence of the TBox. That is, it is important that new concepts make

sense and do not be contradictory with old ones. Formally, a concept makes

sense if there is some interpretation that satisfies the axioms of T such that

the concept denotes a nonempty set in that interpretation.

Definition 5 (Satisfiability) A concept C is satisfiable with respect to T if

there exist a model �I of T such that CI is nonempty. In this case, �I is a

model of C.

While modeling a domain of knowledge into a TBox other important

inference service is necessary. For instance, it is usually interesting to organize

the concepts of a TBox into a taxonomy. That is, it is important to know

whether some concept is more general than another one: the subsumption

problem. Furthermore, other interesting relationships between concepts is the

equivalence.

Definition 6 (Subsumption) A concept C is subsumed by a concept D with

respect to T if CI ⊆ DI for every model �I of T . In this case we write C vT D
or T |= C v D.

Chapter II. Background 20

Definition 7 (Equivalence) Two concepts C and D are equivalent with

respect to T if CI = DI for every model �I of T . In this case we write C ≡T D
or T |= C ≡ D.

If the TBox is clear from the context or empty we can drop the

qualification and simply write |= C v D if C is subsumed by D, and |= C ≡ D

if they are equivalent.

Since it is not our main concern in this thesis, we will not go into more

details about the equivalence and reductions between reasoning problems in

Description Logics. Basically, the different kinds of reasoning can be all reduced

to a main inference problem named the consistency check for ABox [1].

II.5 Inference algorithms

There exist two main algorithms to reasoning in Description Logics:

structural subsumption algorithms and tableaux-based algorithms [1]. We post-

pone the presentation of these two algorithms for Chapter IV, here we will just

present briefly comments about them. One of the differences between them re-

lies on the logical languages that each one can handle.

For the description logic ALN and its subsets, that is, the Description

Logic not allowing full negation (¬C), disjunction (C tD) nor full existential

(∃R.C), the subsumption of concepts can be computed by structural subsump-

tion algorithms. The idea of these algorithms is compare the syntactic structure

of concept descriptions. These algorithms are usually very efficient, polynomial

time complexity [39] indeed.

For ALC and its extensions, the satisfiability of concepts and the sub-

sumption of concept usually can be computed by tableau-based algorithms

which are sound and complete for these problems [1]. The first tableau-based

algorithm for satisfiability of ALC-concepts was presented by [60]. As we said

before, some reasoning problems in Description Logics can be reduced to oth-

ers, in special, the problem to test the subsumption of concepts is reduced

to the problem of test the (un)satisfiability of a concept description. These

algorithms use the fact that C v D if and only if C u ¬D is unsatisfiable [1].

Regarding the complexity, the tableau-based satisfiability algorithm for ALC
is a PSpace-hard problem [60].

II.6 ALC axiomatization

From [59] we known that ALC is sound and complete for any Classical

Propositional Logic axiomatization containing the axioms:

Chapter II. Background 21

Definition 8 (An Axiomatization of ALC)

∀R.(α u β) ≡ ∀R.α u ∀R.β (1)

∀R.> ≡ > (2)

As usual, ∃R.α can be taken as a shorthand for ¬∀R.¬α, as well as ∀R.α
as a shorthand for ¬∃R.¬α. Taking ∃R.α as a definable concept, the axioms

change to

∃R.(α t β) ≡ ∃R.α t ∃R.β (3)

∃R.⊥ ≡ ⊥ (4)

The following rule, also known as necessitation rule:

` α
` ∀R.α Nec

is sound and complete for ALC semantics. In fact, by Lemmas 9 and 10, the

Axiom 1 and this necessitation rule are an alternative axiomatization for ALC.

Lemma 9 The necessitation rule is a derived rule in the above Axiomatiza-

tion.

Proof : Let α be an tautology, so that, from ALC semantics, α ≡ > and

hence, ∀R.α ≡ ∀R.>. Now, from the Axiom ∀R.> ≡ > and we can conclude

that ∀R.α ≡ >, that is, ∀R.α is also a tautology, and so it is provable by

completeness. �

Lemma 10 The Axiom ∀R.> ≡ > is derived from the necessitation rule.

Proof : If the necessitation rule is valid then whenever its premisse is valid,

its conclusion is valid. > is provable, so we can conclude that ∀R.> is also

a provable by the necessitation rule, so the equivalence ∀R.> ≡ > is also

provable. �

Finally, we can state two useful facts following directly from the ALC
semantics. Those facts will be used during this thesis to prove the soundness

of the presented deduction systems.

Fact 1 If C v D then ∃R.C v ∃R.D.

Fact 2 If C v D then ∀R.C v ∀R.D

III
The Sequent Calculus for ALC

III.1 A Sequent Calculus for logicALC

The Sequent Calculus for ALC that it is shown in Figures III.1 and

III.2 considers the extension of the language ALC presented in Section II.1

for labeled concepts. The labels are a list of existencial or universal quantified

roles names. Its syntax is as following:

L→ ∀R,L | ∃R,L | ∅

φlc → Lφc

where R stands for atomic role names, L for list of labels and φc for ALC
concept descriptions defined in Section II.1.

Each labeled ALC concept has a straightforward ALC concept equi-

valent. For example, the ALC concept ∃R2.∀Q2.∃R1.∀Q1.α has the same se-

mantics of the labeled concept ∃R2,∀Q2,∃R1,∀Q1α.

In other words, the list of labels are just the roles prefix of a concept.

Labels are syntactic artifacts of our system, which means that labeled concepts

and its equivalent ALC have the same semantics. The system was designed to

be extended to description logics with role constructors and subsumptions of

roles. This is one of the main reasons to use roles-as-labels in its formulation.

Besides that, whenever roles are promoted to labels the rules of the calculus

can compose or decompose concept description preserving role prefix stored as

labels. In that way, labels are a kind of “context” where concept manipulation

occurs.

Given that any labeled concept has an equivalent ALC concept, the

semantics of a labeled concept can be given with the support of a formal

transformation of labeled concepts into ALC concepts. We defined the function

σ : φlc → φc that takes a labeled ALC concept an returns a ALC concept.

Considering α anALC concept description, the function σ is recursively defined

as:

Chapter III. The Sequent Calculus for ALC 23

σ
(∅α) = α

σ
(∀R,Lα) = ∀R.σ

(
Lα
)

σ
(∃R,Lα) = ∃R.σ

(
Lα
)

Given σ, the semantics of a labeled concept γ is given by σ (γ)I .

We define ∆ ⇒ Γ as a sequent where ∆ and Γ are finite sequences of

labeled concepts. The natural interpretation of the sequent ∆⇒ Γ is the ALC
formula: l

δ∈∆

σ (δ) v
⊔
γ∈Γ

σ (γ)

The SCALC system is presented in Figures III.1 and III.2. In all rules

of the figures, the greek letters α and β stands for ALC concepts (formulas

without labels), γi and δi stands for labeled concepts, Γi and ∆i for lists

of labeled concepts. For a clean presentation, the lists of labels are omitted

whenever they are not used in the rule, this is the case of all structural rules

in Figure III.1. The notation LΓ has to be taken as a list of labeled formulas

of the form Lγ1, . . . ,
Lγk for all γ ∈ Γ. The notation +∀Rγ (resp. +∃Rγ) which

can also be used with list of labeled concepts, +∀RΓ (resp. +∃RΓ), means the

addition of a label, ∀R or ∃R of a given role R, in front of the list of labels

of γ, respectively in all γ ∈ Γ. Finally, we write ∃Lα to denote that all labels

of L are existential quantificated and ∀Lα whenever all labels are universal

quantificated (value restricted).

Considering the labeled formula Lα, the notation ¬Lβ denotes exchanging

the universal roles occurring in L for existential roles and vice-versa in a

consistent way. Thus, if β ≡ ¬α them the formulas will be a negation each

other. For example, ¬∀R,∃Qβ is ∃R,∀Q¬α.

The system ought to be used by applying propositional rules, then the

introduction of labels and then the quantification rules. This procedure will

derive a normal derivation. Example 1 was taken from [7] and is useful to give

an idea of how the rules of the SCALC system can be used.

Example 1 Given the ALC subsumption axiom:

∃child.> u ∀child.¬(∃child.¬Doctor) v ∃child.∀child.Doctor (1)

In SCALC, we can prove that it is a theorem with the proof:

Chapter III. The Sequent Calculus for ALC 24

α⇒ α ⊥ ⇒ α

∆⇒ Γ
weak-l

∆, δ ⇒ Γ
∆⇒ Γ

weak-r
∆⇒ Γ, γ

∆, δ, δ ⇒ Γ
contraction-l

∆, δ ⇒ Γ

∆⇒ Γ, γ, γ
contraction-r

∆⇒ Γ, γ

∆1, δ1, δ2,∆2 ⇒ Γ
perm-l

∆1, δ2, δ1,∆2 ⇒ Γ

∆⇒ Γ1, γ1, γ2,Γ2 perm-r
∆⇒ Γ1, γ2, γ1,Γ2

∆1 ⇒ Γ1,
Lα Lα,∆2 ⇒ Γ2

cut
∆1,∆2 ⇒ Γ1,Γ2

Figure III.1: The System SCALC: structural rules

∆, L,∀Rα⇒ Γ
∀-l

∆, L(∀R.α)L2 ⇒ Γ

∆⇒ Γ, L,∀Rα
∀-r

∆⇒ Γ, L(∀R.α)

∆, L,∃Rα⇒ Γ
∃-l

∆, L(∃R.α)⇒ Γ

∆⇒ Γ, L,∃Rα
∃-r

∆⇒ Γ, L(∃R.α)

∆, ∀Lα, ∀Lβ ⇒ Γ
u-l

∆, ∀L(α u β)⇒ Γ

∆⇒ Γ, ∀Lα ∆⇒ Γ, ∀Lβ u-r
∆⇒ Γ, ∀L(α u β)

∆, ∃Lα⇒ Γ ∆, ∃Lβ ⇒ Γ
t-l

∆, ∃L(α t β)⇒ Γ

∆⇒ Γ, ∃Lα, ∃Lβ t-r
∆⇒ Γ, ∃L(α t β)

∆⇒ Γ, ¬Lα
¬-l

∆, L¬α⇒ Γ

∆, ¬Lα⇒ Γ ¬-r
∆⇒ Γ, L¬α

δ ⇒ Γ prom-∃
+∃Rδ ⇒ +∃RΓ

∆⇒ γ
prom-∀

+∀R∆⇒ +∀Rγ

Figure III.2: The System SCALC: logical rules

Chapter III. The Sequent Calculus for ALC 25

Doctor ⇒ Doctor
prom-∀∀childDoctor ⇒ ∀childDoctor
weak-l

>, ∀childDoctor ⇒ ∀childDoctor ¬-r
> ⇒ ∃child¬Doctor,∀childDoctor ∃-r
> ⇒ ∃child.¬Doctor, ∀childDoctor

prom-∃
∃child> ⇒ ∃child(∃child.¬Doctor), ∃child,∀childDoctor

¬-l∃child>, ∀child¬(∃child.¬Doctor)⇒ ∃child,∀childDoctor
∀-l∃child>, ∀child¬(∃child.¬Doctor)⇒ ∃child∀child.Doctor
∃-r∃child>, ∀child¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor
∀-l∃child>, ∀child.¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor
∃-l

∃child.>, ∀child.¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor
u-l

∃child.> u ∀child.¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor

III.2 SCALC Soundness

The soundness of SCALC is proved by taking into account the intuitive

meaning of each sequent and establishing that the truth preservation holds.

From Section III.1, a sequent ∆ ⇒ Γ is equivalent in meaning to the ALC
formula: l

δ∈∆

σ (δ) v
⊔
γ∈Γ

σ (γ)

A sequent is defined to be valid or a tautology if and only if its corresponding

ALC formula is.

When using the calculus, the usual axioms of a particular DL theory

(TBox or an ontology) of the form C v D should be taken as sequents C ⇒ D.

Labeled formulas occur only during the proof procedure, since they are in

practical terms taken as intermediate data.

Theorem 11 (SCALC is sound) Considering Ω a set of sequents, a theory

or a TBox, let a Ω-proof be any SCALC proof in which sequents from Ω are

permitted as initial sequents (in addition to the logical axioms). The soundness

of SCALC states that if a sequent ∆⇒ Γ has a Ω-proof, then ∆⇒ Γ is satisfied

by every interpretation which satisfies Ω. That is,

if Ω `SCALC ∆⇒ Γ then Ω |=
l

δ∈∆

σ (δ) v
⊔
γ∈Γ

σ (γ)

In the proof of Theorem 11 we will write ∆I as an abbreviation for the

set interpretation of the conjunction of concepts in ∆, that is,
⋂
δ∈∆ σ(δ)I ,

and ΓI as an abbreviation for the set interpretation of the disjunction of the

concepts in Γ,
⋃
γ∈Γ σ(γ)I .

Chapter III. The Sequent Calculus for ALC 26

During the proof below, we will use many times the axioms and facts

from Section II.6.

Proof : We proof Theorem 11 by induction on the length of the Ω-proofs. The

length of a Ω-proof is the number of applications for any derivation rule of the

calculus in a top-down approach.

base case Proofs with length zero are proofs Ω ` ∆ ⇒ Γ where ∆ ⇒ Γ

occurs in Ω. In that case, it is easy to see that the theorem holds.

For the initial sequents, logical axioms like C ⇒ C, it is easy to see that

σ(C)I ⊆ σ(C)I for every interpretation I since every set is a subset of itself.

Induction hypothesis As inductive hypothesis, we will consider that for

proofs of length n the theorem holds. It is now sufficient to show that each

of the derivation rules preserves the truth. That is, if the premises holds, the

conclusion must also hold.

Cut rule Given the sequents ∆1 ⇒ Γ1,
LC and LC,∆2 ⇒ Γ2 then, by

hypothesis, we know that they are valid and so⋂
δ∈∆1

σ(δ)I ⊆
⋃
γ∈Γ1

σ(γ)I ∪ σ(LC)I

and

σ(LC)I ∩
⋂
δ∈∆2

σ(δ)I ⊆
⋃
γ∈Γ2

σ(γ)I

Let ∆I1 =
⋂
δ∈∆1

σ(δ)I , ΓI1 =
⋃
γ∈Γ1

σ(γ)I , ∆I2 =
⋂
δ∈∆2

σ(δ)I , ΓI2 =⋃
γ∈Γ2

σ(γ)I and X = σ(LC)I . Now me must show that the application of the

cut rule preserves the set inclusion. In other words, given ∆I1 ⊆ (ΓI1 ∪X) and

(X ∩∆I2) ⊆ ΓI2 , we must have (∆I1 ∩ ΓI2) ⊆ (ΓI1 ∪ ΓI2). What is easy to show

using the standard set theory.

Rules weak-l and weak-r Given the sequent ∆ ⇒ Γ, by the inductive

hypothesis we know that

∆I ⊆ ΓI

By set theory, ∆I ∩X ⊆ ΓI and ∆I ⊆ ΓI ∪X for any set X interpretation of

a labeled concept α. In the first case, we have the interpretation of ∆, α⇒ Γ.

In the second case, we have the interpretation of ∆ ⇒ Γ, α. This is sufficient

to show the soundness of both rules.

Chapter III. The Sequent Calculus for ALC 27

Rules perm-l and perm-r By the definition of the meaning of a sequent

and its semantics, it is easy to see that both rules are sound. Note that the

order of the formulas in both sides of a sequent do not change the sequent

semantics.

Rules prom-∀ and prom-∃ The soundness of rule prom-∃ if easily proved

using the Fact 1 and Axiom 3. The soundness of rule prom-∀ is proved using

Fact 2 and the Axiom 1.

Rules ∀-r, ∀-l, ∃-r and ∃-l From the definition of σ function, we know

that in all those four rules, both the premises and the conclusions have, given

a interpretation function, the same semantics.

Rules u-l and u-r In order to prove the soundness of those rules we need

the ALC Axiom 1 that states the distributivity of the universal quantified

constructor over the conjunction. Moreover, we must observe that both rules

have an important proviso. That is, they are restricted to details only with

labeled concepts were all labels are universal quantified. This restriction permit

us to apply the Axiom 1 inductively.

Taking the sequent ∆, Lα, Lβ ⇒ Γ valid as hypothesis, we have:

(
∆I ∩ σ(Lα)I ∩ σ(Lβ)I

)
⊆ ΓI

To show that the rule (u-l) is sound, We must prove that ∆, L(α u β)⇒ Γ is

also valid. In other words, that ∆I ∩σ(L(α u β))I ⊆ ΓI holds. What is true by

the definition of σ, the Axiom 1 and the rule proviso which allows us to apply

the Axiom 1 over the list of labels L.

Now consider the rule (u-r). By induction hypothesis, the sequents

∆⇒ Γ, Lα and ∆⇒ Γ, Lβ are valid, and so,

∆I ⊆ ΓI ∪ σ(Lα)I and ∆I ⊆ ΓI ∪ σ(Lβ)I

holds for all interpretations �I . Now, suppose the application of the rule (u-r)

over the two sequent above. We must show that ∆⇒ Γ, L(α u β) is also valid,

that is,

∆I ⊆ ΓI ∪ σ(L(α u β))I

holds. But by basic set theory we have

∆I ⊆ ((ΓI ∪ σ(Lα)I) ∩ (ΓI ∪ σ(Lβ)I))

Chapter III. The Sequent Calculus for ALC 28

And by distributive law

∆I ⊆ ΓI ∪ (σ(Lα)I ∩ σ(Lβ)I)

Finally, by the definition of σ, the Axiom (1) and the rule proviso, we can

conclude that the rule conclusion if valid.

Rules t-l and t-r In both rules the proviso is that the labels list L must

contain only existential quantified roles. The soundness of both rules are proved

with the support of this proviso and the Axiom 3, applied inductively over the

labels lists.

As inductive hypothesis the sequents ∆, Lα ⇒ Γ and ∆, Lβ ⇒ Γ are

valid. That is, given ∆I =
⋂
δ∈∆ σ(δ)I and ΓI =

⋃
γ∈Γ σ(γ)I , we know that

∆I ∩ σ(Lα)I ⊆ ΓI and ∆I ∩ σ(Lβ)I ⊆ ΓI

holds. Now considering the application of the rule (t-l) over the two sequents

above we must prove that the resulting sequent ∆, L(α t β)⇒ Γ is also valid:

∆I ∩ σ(∅(α t β)L)I ⊆ ΓI

Following from the hypothesis and basic set theory we know that if

∆I ∩ X1 ⊆ ΓI an ∆I ∩ X2 ⊆ ΓI than (∆I ∩ X1) ∪ (∆I ∩ X2) ⊆ ΓI what

gives us

∆I ∩ (σ(Lα)I ∪ σ(Lβ)I) ⊆ ΓI

and by the Axiom 3 applied inductively over the list L we have the desired

semantics of the resulting sequent:

∆I ∩ (σ(L(α t β))I) ⊆ ΓI

For rule (tr) the inductive hypothesis is that ∆ ⇒ Γ, Lα, Lβ is valid.

And so, the following statement must holds:

∆I ⊆ ΓI ∪ σ(Lα)I ∪ σ(Lβ)I

Now by the Axiom 3 we can rewrite to

∆I ⊆ ΓI ∪ σ(L(α t β))I

What is the semantics of the rule conclusion.

Chapter III. The Sequent Calculus for ALC 29

Rules ¬-l and ¬-r Given a concept Lα and a interpretation �I we define

the set X = σ(Lα)I and the interpretation of its negation, σ(¬L¬α)I , will be

the set X = ∆I \X.

For rule (¬-l), the inductive hypothesis is that the premise ∆ ⇒ Γ, Lα

is valid. Which means that ∆I ⊆ (ΓI ∪ X). From the basic set theory this

implies that (∆I ∩X) ⊆ ΓI , witch is the interpretation of the conclusion.

For rule (¬-r), the inductive hypothesis is that the premise ∆, Lα ⇒ Γ

is valid. Which means that (∆I ∩ X) ⊆ ΓI . From the basic set theory this

implies that ∆I ⊆ (ΓI ∪X), the interpretation of the conclusion as desired. �

III.3 The Completeness of SCALC
We show the relative completeness of SCALC regarding the axiomatic

presentation of ALC from Section II.6. Since ALC formulas are not labeled, the

completeness must take into account only formulas with empty list of labels.

Proceeding in this way, the ALC sequent calculus deduction rules without

labels behave exactly as the sequent calculus rules for classical propositional

logic. Thus, in order to prove that SCALC is complete, we have only to derive

the axioms above.

The derivation of the rule of necessitation is accomplished by

⇒ α
prom-∀

⇒ ∀Rα ∀-r⇒ ∀R.α
The derivation of the Axiom 1 is obtained from the following derivations.

First we consider the case:

∀R.(α u β) v ∀R.α u ∀R.β

∀Rα⇒ ∀Rα
weak-l∀Rα, ∀Rβ ⇒ ∀Rα
∀-r∀Rα, ∀Rβ ⇒ ∀R.α

∀Rβ ⇒ ∀Rβ
weak-l∀Rα, ∀Rβ ⇒ ∀Rβ
∀-r∀Rα, ∀Rβ ⇒ ∀R.β
u-r

∀Rα, ∀Rβ ⇒ ∀R.α u ∀R.β
u-l∀R(α u β)⇒ ∀R.α u ∀R.β
∀-l

∀R.(α u β)⇒ ∀R.α u ∀R.β

Finally, we prove the subsumption from right to left:

∀R.α u ∀R.β v ∀R.(α u β)

by

Chapter III. The Sequent Calculus for ALC 30

∀Rα⇒ ∀Rα
weak-l

∀R.β, ∀Rα⇒ ∀Rα
∀-l

∀R.β,∀R.α⇒ ∀Rα

∀Rβ ⇒ ∀Rβ
weak-l

∀R.α, ∀Rβ ⇒ ∀Rβ
∀-l

∀R.α,∀R.β ⇒ ∀Rβ
u-r

∀R.α,∀R.β ⇒ ∀R(α u β)
u-l

∀R.α u ∀R.β ⇒ ∀R(α u β)
∀-r

∀R.α u ∀R.β ⇒ ∀R.(α u β)

III.4 The cut-elimination theorem

In this section we adopt the usual terminology of proof theory for sequent

calculus presented in [13, 66]. We follow Gentzen’s original proof for cut

elimination with the introduction of the mix rule.

Let δ be a labeled formula. An inference of the following form is called

mix with respect to ψ, a labeled concept:

∆1 ⇒ Γ1 ∆2 ⇒ Γ2

∆1,∆
∗
2 ⇒ Γ∗1,Γ2

(ψ)

where both Γ1 and ∆2 contain the formula δ, and Γ∗1 and ∆∗2 are obtained from

Γ1 and ∆2 respectively by deleting all the occurrences of δ in them.

But in order to obtain an easier presentation of our cut elimination we

introduce four additional rules of inference called quasi-mix rules.

Lδ ⇒ Γ1 ∆2 ⇒ Γ2
∃R,Lδ,∆∗2 ⇒ +∃RΓ∗1,Γ2

(Lα, ∃R,Lα)
∆1 ⇒ Γ1

Lα⇒ Γ2

∆1 ⇒ Γ∗1,
+∃RΓ2

(∃R,Lα,Lα)

∆1 ⇒ Lα ∆2 ⇒ Γ2
+∀R∆1,∆

∗
2 ⇒ Γ2

(Lα, ∀R,Lα)
∆1 ⇒ Γ1 ∆2 ⇒ Lγ

∆1,
+∀R∆∗2 ⇒ Γ∗1,

∀R,Lγ
(∀R,Lα, Lα)

where in each rule, the tuple of concepts on the right indicates the two mix

formulas of this inference rule. Γ1, the list of formulas on the right from the left-

side premisse, contains the first projection of the tuple, ∆2, the list of formulas

on the left from the right-side premisse, contains the second projection. Γ∗1 and

∆∗2 are obtained from Γ1 and ∆2 by deleting all occurrences of the first and

second tuple’s projection, respectively. The notation +∃R∆ (resp. +∀R∆) means

the addition of ∃R (resp. ∀R) on the list of labels of all δ ∈ ∆.

By the definitions of mix and quasi-mix rules, the mix rule is a special

case of quasi-mix rules in which both mix formulas in the tuple are equal.

Therefore, we can also consider a quasi-mix the mix rule.

Chapter III. The Sequent Calculus for ALC 31

Definition 12 (The SC∗ALC system) We call SC∗ALC the new system ob-

tained from SCALC by replacing the cut rule by the quasi-mix (and mix) rules.

Lemma 13 The systems SCALC and SC∗ALC are equivalent, that is, a sequent

is SCALC-provable if and only if that sequent is also SC∗ALC-provable.

Proof : The four quasi-mix rules are derived from inferences where the

promotional rules (prom-∀ and prom-∃) are applied just before a mix rule.

In that way, one can transformed all the applications of quasi-mix rule into

a sequence of prom-∀ or prom-∃ followed by mix rules applications. All

applications of mix rule can than be replaced by applications of cut rule

provide that all the repetitions of the cut formula in the upper sequents being

first transformed into just one occurrence on each sequent. This is easily done

by one or more application of the contraction and permutation rules.

To illustrate the process, let us consider an application of a quasi-mix

rule in the SC∗ALC-proof fragment bellow where Πn are proof fragments.

The double-line labeled with “perm*; contract*” means the application of

rule permutation one or more times followed by one or more applications of

contraction rule.

Π1

∆1 ⇒ Γ1

Π2

Lα⇒ Γ2
(∃R,Lα,Lα)

∆1 ⇒ Γ∗1,
+∃RΓ2

Π3

And its corresponding SCALC-proof:

Π1

∆1 ⇒ Γ1
perm*; contract*

∆1 ⇒ Γ∗1,
∃R,Lα

Π2

Lα⇒ Γ2
prom-∃

∃R,Lα⇒ +∃RΓ2
cut

∆1 ⇒ Γ∗1,
+∃RΓ2

Π3

�

By the proof of Lemma 13, a derivation Π of ∆⇒ Γ in SCALC with cuts

can be transformed in a derivation Π′ of ∆ ⇒ Γ in SC∗ALC with quasi-mixes

(and mixes). So that, it is sufficient to show that the quasi-mix (and mix) rules

are redundant in SC∗ALC, since a proof in SC∗ALC without quasi-mix (and mix)

is at the same time a proof in SCALC without cut.

Definition 14 (SCT ALC system) SCALC was defined with initial sequents of

the form α ⇒ α with α a ALC concept definition (logical axiom). However,

it is often convenient to allow for other initial sequents. So if T is a set of

Chapter III. The Sequent Calculus for ALC 32

sequents of the form ∆ ⇒ Γ, where ∆ and Γ are sequences of ALC concept

descriptions (non-logical axioms), we define SCT ALC to be the proof system

defined like SCALC but allowing initial sequents to be from T too.

The Definition 14 can be extend to the system SC∗ALC in the same way,

obtaining the systems SC∗T ALC.

Definition 15 (Free-quasi-mix free proof) Let P be an SC∗T ALC-proof. A

formula occurring in P is anchored (by an T -sequent) if it is a direct descendent

of a formula from T occurring in an initial sequent. A quasi-mix inference in

P is anchored if either:

(i) the mix formulas are not atomic and at least one of the occurrences of

the mix formulas in the upper sequents is anchored, or

(ii) the mix formulas are atomic and both of the occurrences of the mix

formulas in the upper sequents are anchored.

A quasi-mix inference which is not anchored is said to be free. A proof

P is free-quasi-mix free if it contains no free quasi-mixes.

Given that a mix is a special quase of quasi-mix, the Definition 15 can

also be used to define free mixes. If a proof P is free-quasi-mix free it is also

free-mix free.

Theorem 16 (Free-quasi-mix Elimination) Let T be a set of sequents. If

SC∗T ALC ` ∆⇒ Γ then there is a free-quasi-mix free SC∗T ALC-proof of ∆⇒ Γ.

Theorem 16 is a consequence of the following lemma.

Lemma 17 If P is a proof of S (in SC∗T ALC) which contains only one free-

quasi-mix, occurring as the last inference, then S is provable without any free-

quasi-mix.

Theorem 16 is obtained from Lemma 17 by simple induction over the

number of quasi-free-mix occurring in a proof P .

We can now concentrate our attention on Lemma 17. First we define three

scalars as a measure of the complexity of the proof. The grade of a formula
Lα is defined as the number of logical symbols of α (denoted by g(Lα)). The

label-degree of a formula Lα is defined as ld(Lα) = |L| where |L| means the

length of the list L.

Let P be a proof containing only one quasi-mix as its last inference:

Chapter III. The Sequent Calculus for ALC 33

∆1 ⇒ Γ1 ∆2 ⇒ Γ2
J (γ, γ′)

∆1,∆
∗
2 ⇒ Γ∗1,Γ2

The grade of a quasi-mix is

g(γ, γ′) = g(γ) + g(γ′)

Given that, the grade of a mix (a special quase of quasi-mix) is the double of

the grade of the mix formula.

In a similar way, the label-degree of a quasi-mix is

ld(γ, γ′) = ld(γ) + ld(γ′)

and the label-degree of a mix is again the double of the lable-degree of the mix

formula.

We say that the grade of P (denote by g(P)) and the label-degree of P

(denoted by ld(P)) is the grade and label-degree of that quasi-mix.

We refer to the left and right sequents as S1 and S2 respectively, and

to the lower sequent as S. We call a thread in P a left (or right) thread if

it contains the left (or right) upper sequent of the quasi-mix J . The rank of

the thread F in P is defined as the number of consecutive sequents, counting

upward from the left (right) upper sequent of J , that contains γ (γ′) in its

succedent (antecedent). Since the left (right) upper sequent always contains

the mix formulas, the rank of a thread in P is at least 1. The rank of a thread

F in P is denoted by rank(F ;P) and is defined as follows:

rankl(P) = max
F

(rank(F ;P)),

where F ranges over all the left threads in P , and

rankr(P) = max
F

(rank(F ;P)),

where F ranges over all the right threads in P . The rank of P is defined as

rank(P) = rankl(P) + rankr(P),

where rank(P) ≥ 2.

Proof : We prove Lemma 17 by lexicographically induction on the ordered

triple (grade,label-degree,rank) of the proof P . We divide the proof into two

main cases, namely rank = 2 and rank > 2 (regardless of the grade and

label-degree).

Chapter III. The Sequent Calculus for ALC 34

Case 1: rank = 2 We shall consider several cases according to the form of

the proofs of the upper sequents of the quasi-mix.

1.1) The left upper sequent S1 is an logical initial sequent. There are several

cases to be examined.

a) P has the form:

α⇒ α
P1

∆2 ⇒ Γ2
J (α, ∃Rα)∃Rα,∆∗2 ⇒ Γ2

We can easily obtain the same end-sequent without using the quasi-

mix as follows: 1

P1

∆2 ⇒ Γ2
perm*

∃Rα, . . . , ∃Rα,∆∗2 ⇒ Γ2
contract*∃Rα,∆∗2 ⇒ Γ2

All other cases, that it, other quasi-mix occurrences in a similar proof

format, are treated in a similar way. Note also that a logical initial sequent

can only have ALC formulas on both sides of the sequent.

1.2) The right upper sequent S2 is an logical initial sequent. Similar as Case 1

above.

1.3) S1 or S2 (or both) are non-logical initial sequents. In this case, it is obvious

that the quasi-mix is not a free and it will be not eliminated.

1.4) Neither S1 nor S2 are initial sequents, and S1 is the lower sequent of a

structural inference J1. Since rankl(P) = 1, the mix formula ψ cannot

appear in the succedent of the premisse of J1, that is, J1 must be the

weak-r that introduced ψ. Again there are several cases to be examined

for each possible quasi-mix rule used.

a) Let us consider the quasi-mix case (Lα, ∃R,Lα):

P1

δ ⇒ Γ1
J1

δ ⇒ Γ1,
Lα

P2

∆2 ⇒ Γ2
J (Lα, ∃R,Lα)

+∃Rδ,∆∗2 ⇒ +∃RΓ1,Γ2

where Γ1 does not contain Lα. We can eliminate the quasi-mix as

follows:

1The notation contract∗ (perm∗) means zero or more applications of contraction (per-
mutation) rule.

Chapter III. The Sequent Calculus for ALC 35

P1

δ ⇒ Γ1 prom-1
+∃Rδ ⇒ +∃RΓ1

weak*

∆∗2,
+∃Rδ ⇒ +∃RΓ1,Γ2

perm*
+∃Rδ,∆∗2 ⇒ +∃RΓ1,Γ2

All other cases are treated in a similar way.

1.5) The same conditions that hold for Case 4 but with S2 as the lower sequent

of structural inference instead of S1. As in Case 4.

1.6) Neither S1 nor S2 are an initial sequents and S1 is the lower sequent of a

prom-∃ rule application and J is a mix rule application.

P1

δ ⇒ Γ1
prom-∃

+∃Rδ ⇒ +∃RΓ1

P2

∆2 ⇒ Γ2
J (+∃Rγ)

+∃Rδ,∆∗2 ⇒ +∃RΓ∗1,Γ2

where by assumption none of the proofs Pn for n ∈ {1, 2} contain a mix or

quasi-mix. Moreover, Γ1 does not contain +∃Rγ since rankl(P) = 1. That

is, the prom-∃ rule introduced the mix formula of J . We can replace the

application of the mix rule by an application of quasi-mix rule as follows:

P1

δ ⇒ Γ1

P2

∆2 ⇒ Γ2
(γ,+∃Rγ)

+∃Rδ,∆∗2 ⇒ +∃RΓ∗1,Γ2

The new quasi-mix rule has label-degree less than the label-degree of the

original mix rule, ld(+∃Rγ, +∃Rγ). So by the induction hypothesis, we can

obtain a proof which contains no mixes.

1.7) Similar case as above with S1 being lower sequent of a prom-∀ or S2 being

lower sequent of prom-∃ or prom-∀. We apply similar transformation of

mix application into quasi-mix rules applications. Always “moving” the

mix upward into the direction of the prom-∀ or prom-∃ inference.

1.8) Both S1 and S2 are lower sequents of logical inferences and rankl(P) =

rankr(P) = 1, J being a mix with the mix formula γ of each side being the

principal formula of the logical inference. We use induction on the grade,

distinguishing several cases according to the outermost logical symbol of

γ:

i) The outermost logical symbol is u. P has the form:

Chapter III. The Sequent Calculus for ALC 36

P1

∆1 ⇒ Γ1,
Lα

P2

∆1 ⇒ Γ1,
Lβ

u-r

∆1 ⇒ Γ1,
L(α u β)

P3

∆2,
Lα, Lβ ⇒ Γ2 u-l

∆2,
L(α u β)⇒ Γ2

(L(α u β))
∆1,∆2 ⇒ Γ1,Γ2

where by assumption none of the proofs Pn for n ∈ {1, 2, 3} contain

a quasi-mix. We transform P into:

P2

∆1 ⇒ Γ1,
Lβ

P1

∆1 ⇒ Γ1,
Lα

P3

∆2,
Lα, Lβ ⇒ Γ2

(Lα)

∆1,∆2,
Lβ ⇒ Γ1,Γ2

(Lβ)
∆1,∆1,∆2 ⇒ Γ1,Γ1,Γ2

perm*; contract*
∆1,∆2 ⇒ Γ1,Γ2

which contains two mix but both with grade less than g(L(α u β)).

So by induction hypothesis, we can obtain a proof which contains

no mixes. Note that the mix (Lα) is now the last inference rule of

a proof which contains no mix. Given that, this mix can be omitted

using the transformations defined above.

ii) The outermost logical symbol is t. In this case S1 and S2 must be

lower sequents of t-r and t-l rule, respectively:

P1

∆1 ⇒ Γ1,
Lα, Lβ

t-r

∆1 ⇒ Γ1,
L(α t β)

P2

∆2,
Lα⇒ Γ2

P3

∆2,
Lβ ⇒ Γ2 t-l

∆2,
L(α t β)⇒ Γ2

(L(α t β))
∆1,∆2 ⇒ Γ1,Γ2

where, by hypothesis, none of the proofs Pn for n ∈ {1, 2, 3} contain

a quasi-mix. This proof can be transformed into:

P1

∆1 ⇒ Γ1,
Lα, Lβ

P2

∆2,
Lα⇒ Γ2

(Lα)

∆1,∆2 ⇒ Γ1,Γ2,
Lβ

P3

∆2,
Lβ ⇒ Γ2

(Lβ)
∆1,∆2,∆2 ⇒ Γ1,Γ2,Γ2

perm*; contract*
∆1,∆2 ⇒ Γ1,Γ2

This proof contains two mix, but both with grade less than

g(L(α t β)). So by the induction hypothesis, we can obtain a proof

which contains no mixes. As mentioned above, the new created mixes

are now the last inference rule of proofs which contains no mix.

iii) The outermost logical symbol is ∀. In this case S1 and S2 must be

lower sequents of ∀-r and ∀-l rule, respectively. P is:

P1

∆1 ⇒ Γ1,
L,Rα

∀-r
∆1 ⇒ Γ1,

L∀R.α

P2

∆2,
L,Rα⇒ Γ2 ∀-l

∆2,
L∀R.α⇒ Γ2

(L∀R.α)
∆1,∆2 ⇒ Γ1,Γ2

Chapter III. The Sequent Calculus for ALC 37

which again by hypothesis, none of the proofs Pn for n ∈ {1, 2}
contain a mix. These proof can be transformed into:

P1

∆1 ⇒ Γ1,
L,Rα

P2

∆2,
L,Rα⇒ Γ2

(L,Rα)
∆1,∆2 ⇒ Γ1,Γ2

which contains one mix with grade less than g(L∀R.α). So by

induction hypothesis, we can obtain a proof which contains no mixes.

iv) The outermost logical symbol is ∃. The treatment is similar to the

case above.

v) The outermost logical symbol is ¬ and P is:

P1

∆1,
Lα⇒ Γ1 neg-r

∆1 ⇒ Γ1,
¬L¬α

P2

∆2 ⇒ Γ2,
Lα

neg-l

∆2,
¬L¬α⇒ Γ2

(¬L¬α)
∆1,∆2 ⇒ Γ1,Γ2

This proof can be transformed into:

P2

∆2 ⇒ Γ2,
Lα

P1

∆1,
Lα⇒ Γ1

(Lα)
∆2,∆1 ⇒ Γ2,Γ1

perm*
∆1,∆2 ⇒ Γ1,Γ2

which contains one mix with grade less than g(¬L¬α). So by the

induction hypothesis, we can obtain a proof which contains no mixes.

1.9) Both S1 and S2 are lower sequents of logical inferences, rankl(P) =

rankr(P) = 1 and J being a quasi-mix (γ, +∃Rγ) where the mix formulas

on each side is the principal formula of the logical inferences. Let us here

present just the case t. In this case S1 and S2 must be lower sequents of

t-r and t-l rule, respectively:

P1

δ ⇒ Γ1,
Lα, Lβ

t-r

δ ⇒ Γ1,
L(α t β)

P2

∆2,
∃R,Lα⇒ Γ2

P3

∆2,
∃R,Lβ ⇒ Γ2 t-l

∆2,
∃R,L(α t β)⇒ Γ2

(L(α t β), ∃R,L(α t β))
+∃Rδ,∆2 ⇒ +∃RΓ1,Γ2

This proof can be transformed into:

P1

δ ⇒ Γ1,
Lα, Lβ

P2

∆2,
∃R,Lα⇒ Γ2

(Lα, ∃R,Lα)
+∃Rδ,∆2 ⇒ +∃RΓ1,

∃R,Lβ,Γ2

P3

∆2,
∃R,Lβ ⇒ Γ2

(∃R,Lβ)
+∃Rδ,∆2,∆2 ⇒ +∃RΓ1,Γ2,Γ2

perm*; contract*
+∃Rδ,∆2 ⇒ +∃RΓ1,Γ2

Chapter III. The Sequent Calculus for ALC 38

which again contains one mix and one quasi-mix, but both with grade

less than the grade of quasi-mix on P . So by the induction hypothesis, we

can obtain a proof which contains no quasi-mixes at all. All other cases

of outermost logical symbol in quasi-mix inferences can be obtained in a

similar way.

Case 2: rank > 2, i.e., rankl(P) > 1 and/or rankr(P) > 1 The

induction hypothesis is that from every proof Q which contains a quasi-

mix only as the last inference, and which satisfies either g(Q) < g(P), or

g(Q) = g(P) and rank(Q) < rank(P), we can eliminate the application of the

quasi-mix.

2.1) rankr(P) > 1

2.1.1) Let us consider a quasi-mix of the form
(
Lα, ∃R,Lα

)
in which Γ2

contains ∃R,Lα or Lδ is Lα. In this case, we construct a new proof

as follows.

Lδ ⇒ Γ1
prom-∃∃R,Lδ ⇒ +∃RΓ1

perm*; contract*
∃R,Lδ ⇒ +∃RΓ∗1,

∃R,Lα
weak*; perm*

∃R,Lδ,∆∗2 ⇒ +∃RΓ∗1,Γ2

where the assumption Γ2 contains ∃R,Lα were used in the last

inference to construct Γ2. When ∆1 is Lα, we construct a new

proof as follows:

∆2 ⇒ Γ2
perm*; weak*∃R,Lα,∆∗2 ⇒ Γ2

perm*; weak*
∃R,Lα,∆∗2 ⇒ +∃RΓ∗1,Γ2

2.1.2) S2 is the lower sequent of a inference J2, where J2 is not a logical

inference whose principal formula is δ. We will consider just the

case where the quasi-mix is of the form (δ, +∃Rδ), the other cases

of quasi-mix can be treated in a similar way. P has the form:

P1

∆1 ⇒ Γ1

P2

Φ⇒ Ψ
J2

∆2 ⇒ Γ2
(δ,+∃Rδ)

∆1,∆
∗
2 ⇒ Γ∗1,Γ2

where P1 and P2 contain no quasi-mixes and Φ contains at least

one occurrence of +∃Rδ. We first consider the proof P ′:

P1

∆1 ⇒ Γ1

P2

Φ⇒ Ψ
(δ,+∃Rδ)

∆1,Φ
∗ ⇒ Γ∗1,Ψ

Chapter III. The Sequent Calculus for ALC 39

g(P) = g(P ′), rankl(P ′) = rankl(P) and rankr(P
′) = rankr(P)−

1. Thus, by the induction hypothesis, the final sequent in P ′ is

provable without quasi-mix. Given that, we can now construct a

proof:

P ′

∆1,Φ
∗ ⇒ Γ∗1,Ψ

perm*
Φ∗,∆1 ⇒ Γ∗1,Ψ

J2
∆∗2,∆1 ⇒ Γ∗1,Γ2

In the case that the auxiliary formula in J2 in P is a mix in Φ, we

need an additional weakening before J2 in the last proof.

2.1.3) ∆1 contains no δ’s, S2 is the lower sequent of a logical inference

whose principal formula is δ and J is a mix rule inference. We have

to consider several cases according to the outermost logical symbol

of δ:

i) The outermost logical symbol of δ is u. The last part of P is

of the form:

P1

∆1 ⇒ Γ1

P2

∆2,
Lα, Lβ ⇒ Γ2

J2

∆2,
L(α u β)⇒ Γ2

J
(
L(α u β)

)
∆1,∆

∗
2 ⇒ Γ∗1,Γ2

Now let us consider the proof Q:

P1

∆1 ⇒ Γ1

P2

∆2,
Lα, Lβ ⇒ Γ2

J
(
L(α u β)

)
∆1,∆

∗
2,
Lα, Lβ ⇒ Γ∗1,Γ2

assuming that L(α u β) is in ∆2. Note that g(Q) = g(P),

rankl(Q) = rankl(P) and rankr(Q) = rankr(P) − 1. Hence

by the induction hypothesis, the end-sequent of Q is provable

without a mix. Let us call such proof Q′ and consider the

following proof P ′:

P1

∆1 ⇒ Γ1

Q′

∆1,∆
∗
2,
Lα, Lβ ⇒ Γ∗1,Γ2

J2

∆1,∆
∗
2,
L(α u β)⇒ Γ∗1,Γ2

J
(
L(α u β)

)
∆1,∆1,∆

∗
2 ⇒ Γ∗1,Γ

∗
1,Γ2

Given that, g(P ′) = g(P), rankl(P
′) = rankl(P) and

rankr(P
′) = 1 (for ∆1 contains no occurences of L(α u β))

by the induction hypothesis the end-sequent of P ′ is provable

without a mix, and so is the end-sequent of P .

ii) The outermost logical symbol of δ is t. Let us consider a proof

P whose last part is of the form:

Chapter III. The Sequent Calculus for ALC 40

P1

∆1 ⇒ Γ1

P2

∆2,
Lα⇒ Γ2

P3

∆2,
Lβ ⇒ Γ2

∆2,
L(α t β)⇒ Γ2

(L(α t β))
∆1,∆

∗
2 ⇒ Γ∗1,Γ2

Assuming that L(α t β) is in P1 and P2, consider the proof

Q1:

P1

∆1 ⇒ Γ1

P2

∆2,
Lα⇒ Γ2

(L(α t β))
∆1,∆

∗
2,
Lα⇒ Γ∗1,Γ2

and Q2:

P1

∆1 ⇒ Γ1

P3

∆2,
Lβ ⇒ Γ2

(L(α t β))

∆1,∆
∗
2,
Lβ ⇒ Γ∗1,Γ2

We note that g(Q1) = g(Q2) = g(P), rankl(Q1) =

rankl(Q2) = rankl(P) and rankr(Q1) = rankr(Q2) <

rankr(P). Hence, by the induction hypothesis, the end-

sequents of P1 and P2 are provable without a mix. Let us

consider new proofs without mix Q′1 and Q′2 in the construc-

tion of P ′:

P1

∆1 ⇒ Γ1

Q′1
∆1,∆

∗
2,
Lα⇒ Γ∗1,Γ2

Q′2

∆1,∆
∗
2,
Lβ ⇒ Γ∗1,Γ2 t-l

∆1,∆
∗
2,
L(α t β)⇒ Γ∗1,Γ2

(L(α t β))
∆1,∆1,∆

∗
2 ⇒ Γ∗1,Γ

∗
1,Γ2

Then, g(P ′) = g(P), rankl(P
′) = rankl(P) and rankr(P

′) =

1, since ∆1 and ∆∗2 do not contain L(α t β). By the induction

hypothesis the end-sequent of P ′ is provable without a mix.

iii) The outermost logical symbol of δ is ∀. That is, the mix

formula is of the form L(∀R.α). Let us consider the proof P :

P1

∆1 ⇒ Γ1

P2

∆2,
L,Rα⇒ Γ2 ∀-l

∆2,
L(∀R.α)⇒ Γ2 (

L∀R.α
)

∆1,∆
∗
2 ⇒ Γ∗1,Γ2

where L∀R.α occurs on ∆2 since rankr(P) > 1. Let us consider

a proof Q as follows:

P1

∆1 ⇒ Γ1

P2

∆2,
L,Rα⇒ Γ2 (

L∀R.α
)

∆1,∆
∗
2,
L,Rα⇒ Γ∗1,Γ2

Note that grade(Q) = grade(P), rankl(Q) = rankl(P) and

rankr(Q) = rankr(P)− 1. So, by the induction hypothesis on

Chapter III. The Sequent Calculus for ALC 41

can obtain a proof Q′ with the same end-sequent as Q without

quasi-mix inferences. Now consider the new proof P ′:

P1

∆1 ⇒ Γ1

Q′

∆1,∆
∗
2,
L,Rα⇒ Γ∗1,Γ2 ∀-l

∆1,∆
∗
2,
L∀R.α⇒ Γ∗1,Γ2 (

L∀R.α)
)

∆1,∆1,∆
∗
2 ⇒ Γ∗1,Γ

∗
1,Γ2

contract*
∆1,∆

∗
2 ⇒ Γ∗1,Γ2

Now we have

g(P ′) = g(P) and rankl(P
′) = rankl(P)

and rankr(P
′) = 1 (for ∆1 and ∆∗2 do not contain L∀R.α).

Thus the end-sequent of P ′ (the same of P) is provable without

quasi-mix by the induction hypothesis.

The remaining cases where δ is of the form L∃R.α and L¬α are

treated in a similar way.

2.1.4) The same conditions that hold for 2.1.3 but J is a quasi-mix

rule inference. We have to consider several cases according to the

outermost logical symbol of δ. All the cases are treated in a similar

way of cases 2.1.3.

2.2) rankr(P) = 1 and rankl(P) > 1. This case is proved as in case 2.1 above.

�

IV
Comparing SCALC with other ALC De-
duction Systems

The structural subsumption algorithm is restricted to a quite inexpressive

language. Simple Tableaux based algorithms generally fails to provide short

proofs. On the other hand, the later has an useful property, it returns a counter-

model from an unsuccessful proof. A counter-model, that is, an interpretation

that falsifies the premise, is a quite useful object to a knowledge-base engineer.

In Section IV.1 we compare SCALC with the structual subsumption

algorithm. In Section IV.2 we show how to extend SCALC in order to be able

to construct a counter-model from unsuccessful proofs. In this way, SCALC can

be compared with Tableaux algorithms, indeed. In fact the system that will be

presented in the section, SC[]ALC, is a structural-free sequent calculus designed

to provide sequent proofs without considering backtracking during the proof-

construction from conclusion to axioms. Nevertheless, two secondary results

are obtained from Section IV.2:

1. In Section III.3 a relative completeness of SCALC regarding the axiomatic

presentation of ALC is shown. In Section IV.2 we present an alternative

proof of SCALC completeness. The method used in this section is a basis

for constructing a proof of SCALCQI completeness.

2. Since the results of Section IV.2 are obtained from a SCALC without

cut-rule, we are actually proving the completeness of SCALC without the

cut-rule. Given that, the results can also be considered an alternative

method of cut-elimination for the SCALC presented in Section III.4, where

we followed Gentzen’s original proof for cut elimination.

IV.1 Comparing SALC with the Structural

Subsumption algorithm

The structural subsumption algorithms (SSA) presented in [1] compare

the syntactic structure of two normalized concept descriptions in order to verify

Chapter IV. Comparing SCALC with other ALC Deduction Systems 43

if the first one is subsumed by the second one. In order to compare deductions

in SCALC with deductions in SSA, we have just to observe that each step

taken by a bottom-up construction of a SCALC proof corresponds to a step

of the SSA algorithm towards the concepts matching. Moreover, SSA can

deal with concepts expressed in ALN language (AL augmented with number

restrictions). In other hands, SCALC can deal with concepts expressed in ALC
and will be extended in Chapter VI to deal with ALCQI.

For a concrete example, let us consider the SCALC proof below where A

and B stands for atomic concepts and C and D for normalized concepts.

A1 ⇒ B1

∀R1.C1, A1 ⇒ B1

A1, ∀R1.C1 ⇒ B1

R1C1 ⇒ S1D1
R1C1 ⇒ ∀S1.D1

∀R1.C1 ⇒ ∀S1.D1

A1, ∀R1.C1 ⇒ ∀S1.D1

A1,∀R1.C1 ⇒ B1 u ∀S1.D1

A1 u ∀R1.C1 ⇒ B1 u ∀S1.D1

The deduction above deals with two normalized concepts, A1 u ∀R1.C1

and B1 u ∀S1.D1. It would conclude the subsumption (sequent) whenever the

top-sequents ensure also their respective subsumptions. This is just what the

recursive procedure of SSA does.

IV.2 Obtaining counter-models from unsuc-

cessful proof trees

The SCALC system rules are not deterministic. That is, if rules are applied

in the wrong order, we can fail to obtain a proof of an ALC theorem. For

instance, consider the fully expanded proof tree presented in the Example 2.

The initial sequent denotes a subsumption proved valid by the Example 1

(page 23). Despite that, reading bottom-up, from the sequent

∃child>, ∀child¬(∃child.¬Doctor)⇒ ∃child,∀childDoctor

the rule weak-l was applied to allow the application of rule prom-∃. But the

weak-l rule removed the wrong concept from the sequent, which turned the

proof impossible to be finished, that is, the top sequent is not an axiom. Given

that, in order to obtain a counter-model from unsuccessful proofs, we must

consider not only one of the possibles fully expanded proof trees but all of

them. In other words, one possible fully expanded proof tree of a given sequent

is not a sufficient evidence that this sequent is not a theorem.

Example 2 An unsuccessful proof of a valid sequent in SCALC:

Chapter IV. Comparing SCALC with other ALC Deduction Systems 44

> ⇒ ∀childDoctor
prom-∃∃child> ⇒ ∃child,∀childDoctor
weak-l∃child>, ∀child¬(∃child.¬Doctor)⇒ ∃child,∀childDoctor
∀-r∃child>child, ∀child¬(∃child.¬Doctor)⇒ ∃child∀child.Doctor
∃-r∃child>, ∀child¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor
∀-l∃child>,∀child.¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor
∃-l

∃child.>,∀child.¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor
u-l

∃child.> u ∀child.¬(∃child.¬Doctor)⇒ ∃child.∀child.Doctor

To better illustrate the problem with obtaining a counter-model from a

fully expanded proof trees, consider Example 3 (page 44) which does not hold

for concepts A and B in general.

Example 3 Two possibly fully expanded proof trees for the invalid subsump-

tion:

∃R.A u ∃R.B v ∃R.(A uB)

B ⇒ A B ⇒ B u-r
B ⇒ A uB

prom-∃∃RB ⇒ ∃RA uB
weak-l∃RA, ∃RB ⇒ ∃RA uB
∃-r∃RA, ∃RB ⇒ ∃R.A uB
∃-l∃RA,∃R.B ⇒ ∃R.A uB
∃-l∃R.A, ∃R.B ⇒ ∃R.A uB
u-l∃R.A u ∃R.B ⇒ ∃R.A uB

A⇒ A A⇒ B u-r
A⇒ A uB

prom-∃∃RA⇒ ∃RA uB
weak-l∃RA, ∃RB ⇒ ∃RA uB
∃-r∃RA, ∃RB ⇒ ∃R.A uB
∃-l∃RA, ∃R.B ⇒ ∃R.A uB
∃-l∃R.A, ∃R.B ⇒ ∃R.A uB
u-l∃R.A u ∃R.B ⇒ ∃R.A uB

Given a fully expanded proof tree, in the attempt to construct a counter-

model for the bottom sequent, the process should have to start from the

most top sequents, not axioms, going into the direction of the bottom sequent

adjusting the model at each rule application in order to guarantee that in each

step, if the model being constructed does not satisfy the premiss, it should not

satisfy the conclusion. In this way we would have an algorithm to construct a

counter-model for any fully expanded proof tree.

In Example 3, let us first consider the fully expanded proof tree on the

left, if we start from the logical axiom B v B it would be not possible to

construct any counter-model for it. But starting from B ⇒ A we can easly

construct an interpretation I where BI 6v AI . But this is not sufficient

to negate the bottom sequent. Basically, from top-down, when we get into

the point to consider the application of rule weak-l, we must note that the

formula introduced on the left force us to include one more restriction in the

counter-model I being constructed. I not only has to guarantee BI 6v AI

but also AI 6v BI . The derivation on the right would let us conclude this

same restrictions in the inverse order. The two derivations are basically the

two possibles choices of formulas in the application of weak-l rule.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 45

One important property of weak and promotional rules is that they are

not double-sound. A rule is said double-sound if it is not only truth-preserving

from the premiss to conclusion but also from the conclusion to its premiss.

Regarding the top-bottom construction of counter-model, this means that in

the adjustment of the counter-model I being constructed, the fact that I does

not satisfy the premiss of a weak rule application does not guarantee that it

does not satisfy its conclusion. Moreover, the introduced formula by the weak

rule can be arbitrary complex making the adjustment of the counter-model

not trivial nor modular.

Let us consider the system SC[]ALC, a conservative extension of SCALC

presented in Figure IV.1. SC[]ALC sequents are expressions of the form ∆⇒ Γ

where ∆ and Γ are sets of labeled concepts (possibly frozen). A frozen concept

α is represented as [α]n where n is the index (context identifier) of the frozen

concept. The notation [∆]n means that each δ ∈ ∆ is frozen with the same

index (i.e. {[δ]n | δ ∈ ∆}). Given a SC[]ALC sequent with the general form 1,

we call each pair (∆k,Γk) a context in the sequent.

∆1, [∆2]1, . . . , [∆n]n−1 ⇒ Γ1, [Γ2]1, . . . , [Γn]n−1 (1)

SC[]ALC does not have permutation, contraction or the cut rule from

SCALC. Reading bottom-up, the weak rules of SC[]ALC save the context of the

proof before removing a concept from the lefthand (antecedent) or righthand

side (succedent) of the sequent and the frozen-exchange changes the contexts

during a proof construction. Considering that in SC[]ALC the sequents are

constructed by two sets (not lists) of concepts, weak rules are still necessary

only to allow the application of promotional rules.

The notation +∀RΓ or +∃RΓ denotes the addition of the Role R existen-

tialy or universaly quantified in the front of each list of labels of all formulas of

Γ. In rules u-{l,r}, t-{l,r}, ∀-{l,r}, ∃-{l,r} and in the axiom, ∆ and Γ stand for

labeled concepts frozen or not. In the promotional, frozen-exchange and weak

rules we have to distinguish the frozen concepts from the non-frozen ones. We

use the notation [∆] (resp. [Γ]) to denote the set of all frozen concepts in the

sequent regardless their index. The index k must be in all rules a fresh one.

In rule frozen-exchange, all formulas in ∆2 and Γ2 cannot be the con-

clusion of any rule application except the frozen-exchange. This proviso is

not actually necessary to guarantee the soundness of the system, it is more

a strategy for proof constructions. The idea is to postpone the exchange of

contexts until no other rule can reduce the current active context, avoiding

unnecessary swapping of contexts.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 46

∆, δ ⇒ δ,Γ

[∆, δ]k,∆⇒ Γ, [Γ]k
weak-l

∆, δ ⇒ Γ

[∆]k,∆⇒ Γ, [Γ, γ]k
weak-r

∆⇒ Γ, γ

∆, L,∀Rα⇒ Γ
∀-l

∆, L(∀R.α)L2 ⇒ Γ

∆⇒ Γ, L,∀Rα
∀-r

∆⇒ Γ, L(∀R.α)

∆, L,∃Rα⇒ Γ
∃-l

∆, L(∃R.α)⇒ Γ

∆⇒ Γ, L,∃Rα
∃-r

∆⇒ Γ, L(∃R.α)

∆, ∀Lα, ∀Lβ ⇒ Γ
u-l

∆, ∀L(α u β)⇒ Γ

∆⇒ Γ, ∀Lα ∆⇒ Γ, ∀Lβ
u-r

∆⇒ Γ, ∀L(α u β)

∆, ∃Lα⇒ Γ ∆, ∃Lβ ⇒ Γ
t-l

∆, ∃L(α t β)⇒ Γ

∆⇒ Γ, ∃Lα, ∃Lβ
t-r

∆⇒ Γ, ∃L(α t β)

∆⇒ Γ, ¬Lα
¬-l

∆, L¬α⇒ Γ

∆, ¬Lα⇒ Γ ¬-r
∆⇒ Γ, L¬α

[∆], Lδ ⇒ Γ, [Γ1]
prom-∃

[∆], ∃R,Lδ ⇒ +∃RΓ, [Γ1]

[∆1],∆⇒ Lγ, [Γ]
prom-∀

[∆1], +∀R∆⇒ ∀R,Lγ, [Γ]

[∆], [∆2]k,∆1 ⇒ Γ1, [Γ2]k, [Γ]
frozen-exchange

[∆],∆2, [∆1]n ⇒ [Γ1]n,Γ2, [Γ]

Figure IV.1: The System SC[]ALC

Chapter IV. Comparing SCALC with other ALC Deduction Systems 47

In Section III.1, we presented the natural interpretation of a sequent

∆⇒ Γ in SCALC as the ALC formula

l

δ∈∆

σ (δ) v
⊔
γ∈Γ

σ (γ)

Given an interpretation function �I we write I |= ∆⇒ Γ, if and only if,⋂
δ∈∆

σ (δ)I ⊆
⋃
γ∈Γ

σ (γ)I

Now we have to extend that definition to give the semantics of the sequents

with (indexed) frozen concepts.

Definition 18 (Satisfability of frozen-labeled sequents) Let ∆ ⇒ Γ be

a sequent with its succedent and antecedent having formulas that range over

labeled concepts and frozen labeled concepts. This sequent has the general form

of 1. Let (I1, . . . , In) be a tuple of interpretations. We say that this tuple

satisfies ∆⇒ Γ if and only if, one of the following clauses holds:

I1 |= ∆1 ⇒ Γ1 I2 |= ∆2 ⇒ Γ2 . . . In |= ∆n ⇒ Γn (2)

That is, the first projection should satisfy the set of non-frozen formulas. The

second projection should satisfy the set of frozen formulas with the minimum

index and so on. The sequent ∆⇒ Γ is not satisfiable by a tuple of interpret-

ations, if and only if, no interpretation in the tuple satisfy its corresponding

context.

Before proceeding to present the procedure to obtain counter-models

from SC[]ALC-proofs, we must introduce Lemma 19 showing that SC[]ALC is a

conservative extension of SCALC.

Lemma 19 Consider ∆ ⇒ Γ a SCALC sequent. If P is a proof of ∆ ⇒ Γ in

SC[]ALC then it is possible to construct a proof P ′ of ∆⇒ Γ in SCALC.

Proof :

Each application of a frozen-exchange rule correspond to a shift of

contexts during the bottom-up proof construction process. To proof Lemma 19

we need a two-steps procedure to: (1) remove all frozen-exchange applications

of a given proof (a proof in SC[]ALC without any frozen-exchange application is

naturally translated to a proof in SCALC); (2) replace the weak rules of SC[]ALC

by their counterparts in SCALC.

We show that a proof P in SC[]ALC can always be transformed into a proof

P ′ in SC[]ALC without any frozen-exchange rule applications by induction over

Chapter IV. Comparing SCALC with other ALC Deduction Systems 48

the number of applications of frozen-exchange occurring in a proof P . Let us

consider a topmost application of rule frozen-exchange in P , where reading

bottom-up, the frozen-exchange rule recover a context that was frozen by the

γ rule that can be a weak-l or weak-r rule.

∆, α⇒ α,Γ

Π1

[∆], [∆′′1]j,∆1 ⇒ Γ1, [Γ
′′
1]j, [Γ]

frozen-exchange

[∆], [∆1]k∆′′1 ⇒ Γ′′1, [Γ1,]
k, [Γ]

Π2

[∆], [∆1]k∆′1 ⇒ Γ′1, [Γ1,]
k, [Γ]

γ

[∆],∆1 ⇒ Γ1, [Γ]

We can obtain P ′ bellow by simple discarding the proof fragment Π2.

∆, α⇒ α,Γ

Π1

[∆],∆1 ⇒ Γ1, [Γ]

Applying recursively the transformations above from top to bottom we

obtain a proof in SC[]ALC without any frozen-exchange rule application. Note

also that this procedure will remove any branch created between the rule that

introduced the frozen-formulas and the removed frozen-exchange application.

Given a frozen-exchange free SC[]ALC-proof, to obtain a SCALC-proof,

we have only to drop out the frozen concepts and substitute weak-{l,r} rules

application of SC[]ALC for their counter-parts in SCALC.

Let us consider the weak-l case, rule weak-r can be dealt similarly. Given

the SC[]ALC-proof fragment below containing the top most application of rule

weak-r:

Π
[∆], [∆1]k ⇒ Γ2, [γ,Γ2]k, [Γ]

weak-r
[∆],∆1 ⇒ γ,Γ2, [Γ]

From the fragment above, we construct:

Π
∆1 ⇒ Γ2

weak-r
∆1 ⇒ γ,Γ2

Applying recursively the transformations above from top to bottom we

obtain a proof in SCALC from a proof in SC[]ALC. �

Let us give a precise definition of fully expanded proof tree. A fully

expanded proof tree of ∆ ⇒ Γ is a tree having ∆ ⇒ Γ as root, each internal

node being a sequent premise of a valid SC[]ALC rule application, and each leaf

being either a SC[]ALC axiom (initial sequent) or a top-sequent (not axiom) with

Chapter IV. Comparing SCALC with other ALC Deduction Systems 49

not necessarily only atomic concepts. A sequent is a top-sequent if and only if

it does not contain reducible contexts. A reducible contexts is a context that if

active could be further reduced. In the following lemmas we are interested in

fully expanded proof trees that are not SC[]ALC proofs.

If we consider a particular strategy of rule applications, any fully expan-

ded proof tree will have a special form called normal form. The following are

the main properties of this strategy:

1. It is a fair strategy of rules applications that avoid infinite loops of, for

instance, frozen-exchange applications swapping contexts or unnecessary

repetition of proof fragments;

2. Promotional rules will be applied whenever possible, that is, they have

high priority over the other rules;

3. The strategy will discard contexts created by the successive application

of weak rules and avoid further applications of weak rules once it is

possible to detected that they will not be useful to obtain an initial

sequent. For instance, from a sequent ∆⇒ Γ, where ∆ and Γ only contain

atomic concept names without any common concept name, we know that

using weak rules we would not obtain an initial sequent. Moreover, weak

rules will be used with the unique purpose of enabling promotion rules

applications.

A more insightful definition of the last item above would be possible if

we replace the weak rules in SC[]ALC by the weak∗ rule below.

[∆′], [∆,∆1]k,∆⇒ Γ, [Γ1,Γ]k, [Γ′]
weak∗

[∆′],∆,∆1 ⇒ Γ1,Γ, [Γ
′]

Lemma 20 The weak∗ rule is a derived rule in SC[]ALC.

Proof : To prove Lemma 20, given a derivation fragment Π with a weak∗

rule application, we show how to replace it by successive weak-l and weak-

r applications. Without lost of generality, let us consider one special case of

weak∗ freezing two concepts of both sides of a sequent.

Π′

[∆, δ1, δ2]k,∆⇒ Γ, [γ1, γ2,Γ]k
weak∗

∆, δ1, δ2 ⇒ γ1, γ2,Γ

The corresponding fragment Π1 is presented below. The context k is now

followed by the contexts k + 1, k + 2, k + 3.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 50

Π′

[∆, δ1, δ2]k, [∆, δ2]k+1, [∆]k+2, [∆]k+3,∆⇒ Γ, [γ1, γ2,Γ]k, [γ1, γ2,Γ]k+1, [γ1, γ2,Γ]k+2, [γ2,Γ]k+3

weak-r
[∆, δ1, δ2]k, [∆, δ2]k+1, [∆]k+2,∆⇒ γ2,Γ, [γ1, γ2,Γ]k, [γ1, γ2,Γ]k+1, [γ1, γ2,Γ]k+2

weak-r
[∆, δ1, δ2]k, [∆, δ2]k+1,∆⇒ γ1, γ2,Γ, [γ1, γ2,Γ]k, [γ1, γ2,Γ]k+1

weak-l
[∆, δ1, δ2]k,∆, δ2 ⇒ γ1, γ2,Γ, [γ1, γ2,Γ]k

weak-l
∆, δ1, δ2 ⇒ γ1, γ2,Γ

Applying recursively the transformations above from top to bottom we

obtain a weak∗-free proof in SC[]ALC. �

We introduced the weak∗ rule to avoid dispensable contexts during the

bottom-up proof search procedure. Using the strategy suggested above, we

only apply the weak rules in order to allow further application of promotional

rules. The idea is that we don’t need to save unnecessary contexts that are

variants of already saved contexts.

Example 4 Consider the fully expanded proof tree Π having sequent 3 as root.

∃R.A u ∃R.B ⇒ ∃R.(A uB) (3)

[A]2, [. . .]3, B ⇒ A, [. . .]3, [B]2 [A]2, [. . .]3, B ⇒ B, [. . .]3, [B]2
u-r

[A]2, [∃RA, ∃RB]3, B ⇒ A uB, [∃R(A uB)]3, [B]2
prom-∃

[A]2, [∃RA, ∃RB]3, ∃RB ⇒ ∃R(A uB), [∃R(A uB)]3, [B]2
weak∗

[A]2, ∃RA, ∃RB ⇒ ∃R(A uB), [B]2
f-exch

[∃RA, ∃RB]1, A⇒ B, [∃R(A uB)]1 [. . .]1, A⇒ A, [. . .]1
u-r

[. . .]1, A⇒ A uB, [. . .]1
prom-∃

[∃RA, ∃RB]1, ∃RA⇒ ∃R(A uB), [∃R(A uB)]1
weak∗∃RA, ∃RB ⇒ ∃R(A uB)

∃-r∃RA, ∃RB ⇒ ∃R.(A uB)
∃-l∃RA,∃R.B ⇒ ∃R.(A uB)
∃-l

∃R.A,∃R.B ⇒ ∃R.(A uB)
u-l

∃R.A u ∃R.B ⇒ ∃R.(A uB)

We can split Π in three fragments named Π1, Π2 and Π3. The fragments

are separated by weak∗ and frozen-exchanges. Fragments Π2 and Π3 correspond

to the two different ways to apply the weak∗ in the top-sequent of the fragment

Π1.

Π1 ≡

Π2

∃RA, ∃RB ⇒ ∃R(A uB)
∃-r∃RA, ∃RB ⇒ ∃R.(A uB)
∃-l∃RA,∃R.B ⇒ ∃R.(A uB)
∃-l

∃R.A, ∃R.B ⇒ ∃R.(A uB)
u-l

∃R.A u ∃R.B ⇒ ∃R.(A uB)

Chapter IV. Comparing SCALC with other ALC Deduction Systems 51

Π2 ≡

Π3

[. . .]1, A⇒ B, [. . .]1 [. . .]1, A⇒ A, [. . .]1
u-r

[. . .]1, A⇒ A uB, [. . .]1
prom-∃

[∃RA, ∃RB]1, ∃RA⇒ ∃R(A uB), [∃R(A uB)]1

Π3 ≡
[A]2, [. . .]3, B ⇒ A, [. . .]3, [B]2 [A]2, [. . .]3, B ⇒ B, [. . .]3, [B]2

u-r
[A]2, [. . .]3, B ⇒ A uB, [. . .]3, [B]2

prom-∃
[A]2, [∃RA, ∃RB]3, ∃RB ⇒ ∃R(A uB), [∃R(A uB)]3, [B]2

Regarding the contexts created during the proof, contexts 1 and 3 were not

turned active yet, they are called auxiliary contexts, they were created during

the bottom-up proof construction to save a proof state to further activation

and transformation with the system rules, if necessary. Context 1 was used but

context 3 was not. Context 2 is the top-sequent of fragment Π2, saved after

been reduced. The idea is that from the fragments Π2 and Π3 we can construct

a counter-model for the root sequent of Π.

Lemma 21 If P is a fully expanded proof-tree in SC[]ALC with sequent S as

root (conclusion) and if P is in the normal form, from any top-sequent not

initial (non-axiom), one can construct a counter-model for S.

Proof : To prove Lemma 21 we must first identify all possible top-sequents in

SC[]ALC. If weak rules are not allowed during the derivation, all top-sequents

in SC[]ALC would have the general form of 4.

A1, . . . , An︸ ︷︷ ︸
∆1

, ∀R1,L1B1, . . . ,
∀Rm,LmBm︸ ︷︷ ︸

∆2

⇒ C1, . . . , Cl︸ ︷︷ ︸
∆3

, ∃R1,L1D1, . . . ,
∃Rp,LpDp︸ ︷︷ ︸

∆4

(4)

where we group the concepts into four sets ∆1,∆2,∆3 and ∆4. A1,n and C1,l

are sets of atomic concepts. In ∆2, B1,m are atomic concepts or disjunctions

of concepts (not necessarily atomic). In ∆4, D1,p are atomic concepts or

conjunctions of concepts (not necessarily atomic).

To see that no other rule of SC[]ALC, rather than weak, could be apply

in a sequent like 4, one has just to observe that: (1) the u-r and t-l rules

provisos are blocking the decomposition of the conjunctions and disjunctions;

and (2) the prom-∀ (prom-∃) rule cannot be applied due the lack of a universal

(existential) quantified concept on the right (left).

Nevertheless, with the presence of weak∗ rule and considering the

strategy for construct normal derivations, weak∗ can always be applied to

top-sequents like 4 reducing them to the simpler cases below. For each one, we

will see that it is possible to construct a counter-model.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 52

Case ∆1 ⇒ ∆3 That is, a sequent A1, . . . , An ⇒ C1, . . . , Cl without labeled

concept, it is easy to construct a counter-model I such that there exist an

element a ∈ (A1 u . . . u An)I and a 6∈ (C1 t . . . t Cl)I .

Case ∆2 ⇒ We can construct a counter-model I such that there exist

an element a ∈ (∀R1,L1B1 u . . . u ∀Rm,LmBm)I . The right side of a sequent

is interpreted as a disjunction, so that, if empty, its semantics for any

interpretation function is the empty set. If we consider the simplified case

where all roles (labels) are equal, that is ∀R,L1B1, . . . ,
∀R,LmBm ⇒, we only

need to provide a new element a without fillers in R, that is, ∃x(a, x) 6∈ RI .
For the general case, where the most external roles on each concept can be

different, the element a cannot have fillers in any of the roles. That is, ∀R
occuring in front of the list of labels in ∆2, ∃x(a, x) 6∈ RI . We must mention

that even if one of the concepts in ∆2 is > or ⊥, we can always construct I.

Case ⇒ ∆4 We can construct a counter-model such that I 6|= ⇒ ∆4. From

the natural interpretation of a sequent, we know that an interpretation will

not satisfy this case when there exist at least one element a 6∈ (∃R1,L1D1t . . .t
∃Rp,LpDp)

I . Since the left side of a sequent is interpreted as a conjunction, if

empty, its semantics for any interpretation function is the universe set of the

interpretation. Once more, let us first consider the case where all existential

roles are equal, ∃R,L1D1 t . . .t ∃R,LpDp. We only need to provide an element a

without fillers in R. If we have different roles in the sequent, a can not have

fillers in any of them.

Case ∆2 ⇒ ∆4 This case can be reduced for the two cases above. We can

always provide an element a ∈ ∆I2 (by second case) and a 6∈ ∆I4 (by third

case). In both cases, a will be a fresh element without fillers in any R, for all

R most external labels of ∆2 and ∆4. �

Lemma 22 If P is a weak∗-free proof fragment with at least one top-sequent

not initial and having S as the bottom sequent. That is, a fragment where no

weak rule were applied. If I is a counter-model for one of its top-sequents,

There is I ′ that is a counter-model for S.

Proof : We prove Lemma 22 by case analysis considering each possible rule

application and showing how to extend an interpretation that is counter-model

of the premiss to be a counter-model of the conclusion.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 53

Cases ∀-{l,r} and ∃-{l,r} In these rules the premiss and conclusion have

the same semantics, that is, a counter-model for its premiss is also a counter-

model for its conclusions.

Cases t-{l,r} and u-{l,r} Let us first consider the rule t-l. Let I be

an interpretation counter-model for at least one of the premiss. That is,

(∆ u ∃Lα)I 6⊂ ΓI or (∆ u ∃Lβ)I 6⊂ ΓI . If any of these cases holds, we have

(∆ u ∃Lα)I ∪ (∆ u ∃Lβ)I 6⊂ ΓI and by the distributivity of the intersection

over the union (∆ u (∃Lα t ∃Lβ))I 6⊂ ΓI , which is semantically equivalent to

conclusion of the rule: (∆u (∃Lα t β))I 6⊂ ΓI . Case u-r would be proved in the

same way by showing that if A 6⊂ B ∪D or A 6⊂ C ∪D then A 6⊂ (B ∩C)∪D.

Rules u-l and t-r are even simpler given the natural interpretation of the

sequents. Basically, we are using the results of Section III.2 which shows that

these rules are double-sound.

Case ¬-l and ¬-r First rule ¬-r where δ a labeled concept and ¬δ its

negation. Let us consider a interpretation I such that I 6|= ∆, δ ⇒ Γ. So we

have an element a ∈ (∆ u δ)I and a 6∈ ΓI . Thus, a ∈ δI and so, a 6∈ (¬δ)I .
Consequently, a 6∈ (¬δ t Γ)I as desired. The case of rule ¬-l is similar.

Case prom-∃ Assume that we have I 6|= δ ⇒ Γ. So we have an element

b ∈ δI and b 6∈ ΓI . We now construct I ′ extending I with one more new

element a in the domain and the tuple (a, b) ∈ RI . In this way, we obtain the

necessary condition to I ′ 6|= +∃Rδ ⇒ +∃RΓ which is a ∈ +∃RδI and a 6∈ +∃RΓI

since a is a fresh element.

Case prom-∀ Assume that we have I 6|= ∆ ⇒ γ. Once more, we have an

element b ∈ ∆I and b 6∈ γI . We construct I ′ as in the case above, introducing

one new element a in the domain and the tuple (a, b) ∈ RI . Since a is a fresh

element with just one filler in R, we guarantee by construction that a ∈ +∀R∆I

and a 6∈ +∀RγI and so, I ′ 6|= +∀R∆⇒ +∀Rγ. Alternatively, we can also introduce

in I ′ the element a without any filler in R to guarantee that I ′ will also be a

counter-model for the conclusion. �

Lemmas 21 and 22 guarantee that from the top-sequents we can construct

counter-models and extend them in fragments weak∗-free. The following lemma

states that we can merge counter-models of proof fragments with top-sequents

that are not axioms.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 54

Lemma 23 Given a weak∗ application with a conclusion S, reading top-down,

this application has two proof fragments with roots S1 and S2, their premise

and the context that was frozen. If there are interpretations I1 and I2 such

that I1 6|= S1 and I2 6|= S2 then there is I such that I 6|= S.

Proof : Without lost of generality, we can consider 5 a general format for

sequents conclusion of weak∗ application. Remember that if we use the strategy

define previous, weak∗ will only be applied in order to permit promotional rules

applications. The case with two existential quantified concepts on the left and

two universal quantified concepts on the right will be sufficient to tread all

possible combinations. The result of this proof can be easily generalized.

∆, ∀R,L1α1,
∃R,L2α2,

∃R,L3α3 ⇒ Γ, ∀R,L4α4,
∀R,L5α5,

∃R,L6α6 (5)

To prove Lemma 23, we have to consider each possible pair of proof frag-

ments that a weak∗ rule can combine in a top-down construction. In addition,

we assume as hypothesis that for both fragments we already constructed a

counter-model for its roots – from Lemmas 21 and 22.

1. S ≡ ∆, ∃R,L2α2 ⇒ Γ, ∃R,L6α6. From the hypothesis, we have I1 6|= ∆⇒ Γ

and I2 6|= ∃R,L2α2 ⇒ ∃R,L6α6, that is, ∆I1 6⊂ ΓI1 and ∃R,L2α2
I2 6⊂

∃R,L6α6
I2 . We create an interpretation I = I1] I2, a disjoint union

of I1 and I2. Now, from I1 we select an element a ∈ ∆I1 and a 6∈ ΓI1

that must exist by hypothesis. From I2 we select an element b ∈ αI22 and

b 6∈ αI26 that must exist by hypothesis. Now In I we add (a, b) ∈ RI and

we guarantee that (∆ u ∃R,L2α2)I 6⊂ (Γ t ∃R,L6α6)I .

2. S ≡ ∆, ∀R,L1α1 ⇒ Γ, ∀R,L5α5. By hypothesis, we have I1 6|= ∆ ⇒ Γ and

I2 6|= ∀R,L1α1 ⇒ ∀R,L5α5, that is, ∆I1 6⊂ ΓI1 and ∀R,L1α1
I2 6⊂ ∀R,L5α5

I2 .

We create the interpretation I as in the previous case, I = I1]I2. From

I1 we select an element a ∈ ∆I1 and a 6∈ ΓI1 . From I2 we select an

element b ∈ αI21 and b 6∈ αI25 . In I we add (a, b) ∈ RI and we guarantee

that (∆ u ∀R,L1α1)I 6⊂ (Γ t ∀R,L5α5)I .

3. S ≡ ∃R,L2α2,
∃R,L3α3 ⇒ ∃R,L6α6. By hypothesis, we have I1 6|= ∃R,L2α2 ⇒

∃R,L6α6 and I2 6|= ∃R,L3α3 ⇒ ∃R,L6α6. We create the interpretation I as in

the previous case, I = I1]I2. From I1 we have a ∈ (∃R,L2α2)I1 , and thus,

an (a, b) ∈ RI1 with b ∈ αI12 . From I2 we have b ∈ (∃R,L3α3)I2 , and thus,

an (b, c) ∈ RI2 with c ∈ αI23 . We create now a fresh element d and add in

RI the set {(d, b), (d, c)}. We have guarantee that d ∈ (∃R,L2α2u∃R,L3α3)I

and d 6∈ (∃R,L6α6)I . Note that b 6∈ (∃R,L6α6)I (resp. c) by hypothesis.

Chapter IV. Comparing SCALC with other ALC Deduction Systems 55

4. If we consider ∀R.α ≡ ¬∃R.¬α, cases S ≡ ∃R,L2α2,
∀R,L1α1 ⇒

∃R,L6α6,
∀R,L4α4 and S ≡ ∀R,L1α1 ⇒ ∀R,L4α4,

∀R,L5α5 has been already

considered.

�

V
A Natural Deduction for ALC

In this chapter we present a Natural Deduction (ND) system for ALC,
named NDALC. We briefly discuss the motivation and the basic considerations

behind the design of NDALC. We also prove the completeness, soundness and

the normalization theorem for NDALC.

It is quite well-known the fact that Natural Deduction (ND) proofs

in intuitionistic logic (IL) have computational content. This content can

be explicitly read from the typed λ-calculus term associated to each proof.

Moreover, to each normalization step that can be applied in the proof, there

is a corresponding β-reduction in its associated typed λ-term. This is known

as the Curry-Howard isomorphism (CH-ISO) between ND and the typed

λ-calculus [30]. For classical logic this isomorphism does not hold any more.

However, there are some attempts to justify weak or modified forms of this

isomorphism for classical logic (see [5] and [3] for example).

It seems to exist some connections between the computational content

of a proof and its ability to provide good structures to explanation extraction

from proofs. In fact, an algorithm is one of the most precise arguments to

explain how to obtain a result out of some inputs. Given that, translating

algorithms according the propositions-as-types CH-ISO we should obtain a

quite good argument establishing the conclusion from the premises. Despite

the fact that for classical logic the CH-ISO is not well-established at all, we

still argue in favour of ND proofs instead of Sequent Calculus (SC) in order

to provide good explanations. One of the main points in favour of ND is the

fact that it is single-conclusion and provides, in this way, a direct chain of

inferences linking the propositions in the proof. It is worth noting that there

is more than one ND normal proof related to the same cut-free SC proof.

It is mainly because of this fact that a (cut-free) SC proof is related to more

than one ND proof. We believe that explanations should be as specific as their

proof-theoretical counterparts.

Chapter V. A Natural Deduction for ALC 57

V.1 The NDALC System

Figure V.1 shows the system called NDALC. Despite the use of labeled

formulas, the main non-standard feature of NDALC is the fact that it is defined

on two kind of “formulas”, namely concept formulas and subsumptions of

concepts.

L∀(α u β)
L∀α

u-e

L∀(α u β)
L∀β

u-e
L∀α L∀β
L∀(α u β)

u-i

L∃(α t β)

[L
∃
α]

....
γ

[L
∃
β]

....
γ

γ t-e

L∃α
L∃(α t β)

t-i
L∃β

L∃(α t β)
t-i

Lα ¬L¬α
⊥ ¬-e

[Lα]
....
⊥

¬L¬α ¬-i

[¬L¬α]

....
⊥
Lα
⊥c

L∃R.α
L,∃Rα

∃-e
L,∃Rα
L∃R.α

∃-i
L∀R.α
L,∀Rα

∀-e

L,∀Rα
L∀R.α

∀-i
L1α L1α v L2β

L2β
v -e

[L1α]
....

L2β
L1α v L2β

v -i

Lα
∀R,Lα

Gen

Figure V.1: The Natural Deduction system for ALC

If Φ1,Φ2 ` Ψ is an inference rule involving only concept formulas then

it states that whenever the premises are taken as non-empty collections of

individuals the conclusion is taken as non-empty too. Particularly, providing

any DL-interpretation for the premise concepts, if a is an individual belonging

to both interpreted concepts then it also belongs to the interpreted conclusion.

On the other hand, a subsumption Φ v Ψ has no concept associate to

it. It states, instead, a truth-value statement, depending on whether the

interpretation of Φ is included in the corresponding interpretation of Ψ. In

terms of a logical system, DL has no concept internalizing v. As we will see

on the next section, this imposes quite particular features on the form of the

normal proofs in NDALC.

Chapter V. A Natural Deduction for ALC 58

In the rule v-i, L1α v L2β depends only on the assumption L1α and no

other hypothesis. The proviso to the application of rule Gen application is that

the premise Lα does not depend on any hypothesis. In ⊥c-rule, Lα has to be

different from ⊥. In some rules the list of labels L has a superscript, L∀ or L∃.

This notation means that the list of labels L should contain only ∀R (resp.

∃R) labels. When L has not superscript, any kind of label is allowed.

The semantics of NDALC follows the ALC semantics presented in Sec-

tion II.1, that is, is given by an interpretation. However, since NDALC deals

with two different kind of formulas, we must define how an interpretation sat-

isfies both kinds.

Definition 24 Let Ω = (C,S) be a tuple composed by a set of labeled concepts

C = {α1, . . . , αn} and a set of subsumption S = {γ1
1 v γ1

2 , . . . , γ
k
1 v γk2}. We

say that an interpretation I = (∆I , �I) satisfies Ω and write I |= Ω whenever:

1. I |= C, which means
⋂
α∈C σ(α)I 6= ∅; and

2. I |= S, which means that for all γi1 v γi2 ∈ S, we have σ(γi1)I ⊆ σ(γi2)I.

We adopted the standard notation Ω ` F if exists a deduction Π with

conclusion F (concept or subsumption) from Ω as set of hypothesis.

V.2 NDALC Soundness

Lemma 25 Let Π be a deduction in NDALC of F with all hypothesis in

Ω = (C,S), then if F is a concept:

S |=
(l

A∈C
A
)
v F

and if F is a subsumption A1 v A2:

S |=
(l

A∈C
A
)
u A1 v A2

With the sake of clear presentation in the following proof we adopt

some special notations. We will write ∀L.α to abbreviate ∀R1.∀Rn.α when

L = ∀R1.∀Rn. The labelled concept Lα will be taken as equivalent to

its ALC correspondent concept σ(Lα). 1 Letters γ and δ stand for labelled

concepts while α and β stand for ALC concepts. We take C as
d
A∈C A. We

will aso use many times the axioms presented in Section II.6.

Proof : The proof of Lemma 25 is done by induction on the height of the

proof tree Π, represented by | Π |.

1In Section III.1 the reader can find the definition of σ function and labeled formulas.

Chapter V. A Natural Deduction for ALC 59

Base case If | Π |= 1 then Ω ` Lα is such that Lα is in Ω. In that case, is

easy to see that Lemma 25 holds since by basic set theory (A∩B) ⊆ A for all

A and B.

Rule u-e By induction hypothesis, if

Π1
L(α u β) is a derivation with all

hypothesis in {C,S} then S |= C v L(α u β). From the definition of labeled

concepts and Axiom 1 we can rewrite to S |= C v Lα u Lβ which from basic

set theory guarantee S |= C v Lα.

Rule u-i Let us consider the two derivations
Π1
Lα and

Π2
Lβ with all hypothesis

in {C1,S1} and {C2,S2}. By induction hypothesis, (1) S1 |= C1 v Lα an (2)

S2 |= C2 v Lβ. Now let us consider the deduction

Π1
Lα

Π2
Lβ

L(α u β)

with all hypothesis in {C1 ∪C2,S1 ∪S2}. It is easy to see that from (1) and (2)

S1 ∪S2 |= (C1 u C2) v Lα and S1 ∪S2 |= (C1 u C2) v Lβ. From basic set theory

we may write S1 ∪ S2 |= (C1 u C2) v Lα u Lβ and finally from Axiom 1 we get

the desired result S1 ∪ S2 |= (C1 u C2) v L(α u β).

Rules t-i Again by induction hypothesis, if
Π1
Lα is a derivation with all

hypothesis in {C,S} then S |= C v Lα. Using basic set theory we can rewrite

to S |= C v Lα t Lβ and using Axiom 3 to S |= C v L(α t β).

Rule (t-e) By induction hypothesis, if

Π1
L(α t β),

[Lα]
Π2
γ and

[Lβ]
Π3
γ

are derivations with hypothesis in {C,S}, {Lα,S} and {Lβ,S}, respectively.

Then, S |= C v L(α t β), S |= Lα v γ and S |= Lβ v γ. From set theory

S |= (Lα t Lβ) v γ and from Axiom 3, S |= L(α t β) v γ. Now by the

transitivity of set inclusion we can get the desired result S |= C v γ.

Rules ∀-i, ∀-e, ∃-i and ∃-e They are sound since the premises and

conclusions have the same semantics.

Chapter V. A Natural Deduction for ALC 60

Rule ¬-e By induction hypothesis, if

Π1
Lα and

Π2
¬L¬α

are derivation with hypothesis in {C1,S1} and {C2,S2} we know that S1 |=
C1 v Lα and S2 |= C2 v ¬L¬α. Now consider the deduction

Π1
Lα

Π2
¬L¬α
⊥

with hypothesis in {S1 ∪ S2, C1 ∪ C2}. By inductive hypothesis we can write

S1 ∪ S2 |= C1 v Lα and S2 ∪ S2 |= C2 v ¬L¬α. Now, from the fact that ALC
semantics states Lα and ¬L¬α as two disjoint sets, we have C1uC2 = ∅ and we

can write S1 ∪ S2 |= (C1 u C2) v ⊥ as desired.

Rule ¬-i If {C,S} holds all the hypothesis of the deduction

Lα
Π2

⊥ then by

induction hypothesis S |= C u Lα v ⊥ (taking ⊥ as its semantics counterpart,

namely, the empty set). From basic set theory S |= C v ¬L¬α as desired.

Rule ⊥c The argument is similar from above.

Rule v-e By induction hypothesis, if
Π1
γ and

Π2

γ v δ are deduction with

hypothesis in {C1,S1} and {C2,S2}, we have (1) S1 |= C1 v γ and (2)

S2 |= C2 u γ v δ. Let us now consider the application of rule v-e to construct

the derivation
Π1
γ

Π2

γ v δ

δ

with hypothesis in {C1 ∪ C2, S1 ∪ S2}. From (2) and ALC semantics we can

conclude S1 ∪ S2 |= C2 u γ v δ. Finally, from basic set theory C1 u C2 v C2 we

obtain S1 ∪ S2 |= C1 u C2 v δ.

Rule v-i By induction hypothesis, if

γ
Π1

δ is a deduction with hypothesis in

{C,S} then S |= C v δ and we conclude S |= C− u γ v δ where C− is C − {γ}.

Rule Gen Let Π be a proof of Lα following from an empty set of hypothesis,

we may write ` Lα. That is, Lα is a DL-tautology or σ(Lα)I ≡ ∆I . From

Chapter V. A Natural Deduction for ALC 61

the necessitation rule from Section II.6, whenever a concept C is a DL-

tautology, for any given R, the concept ∀R.C will be also. For that, we can

conclude that ∀R,Lα for any given R will be also a tautology. Remember that
∀R,Lα ≡ ∀R.σ(Lα). �

Let us now state the main theorem of this section.

Theorem 26 NDALC is sound regarding the standard semantics of ALC.

if Ω ` γ then Ω |= γ

where Ω = (C,S)) is a tuple composed by a set of labeled concepts (C) and

subsumptions (S).

Proof : It follows directly from Lemma 25. �

V.3 NDALC Completeness

We use the same strategy from Section III.3 to prove NDALC complete-

ness. That is, we show how the axiomatic presentation of ALC can be derived

in NDALC.

Theorem 27 NDALC is complete regarding the standard semantics of ALC.

Proof : The DL rule of generalization

` α
` ∀R.α

is a derived rule of NDALC, for supposing ` α implies the existence of a proof

(without hypothesis) Π of α. We prove ∀R.α, without any new hypothesis by

means of the following schema:

Π....
α
Rα

Gen

∀R.α ∀-i

The following proofs justifies in NDALC the ALC axiom ∀R.(A u B) ≡
(∀R.A u ∀R.B), where α ≡ β is an abbreviation for α v β and β v α, having

obvious ≡ elimination and introduction rules, based on v elimination and

introduction rules.

Chapter V. A Natural Deduction for ALC 62

[∀R.(A uB)]
∀-e∀R(A uB)
u-e∀RA ∀-i∀R.A

[∀R.(A uB)]
∀-e∀R(A uB)
u-e∀RB ∀-i∀R.B u-i∀R.A u ∀R.B v-i

∀R.(A uB) v ∀R.A u ∀R.B

[∀R.A u ∀R.B]
u-e

∀R.A ∀-e∀RA

[∀R.A u ∀R.B]
u-e

∀R.B ∀-e∀RB u-i∀R(A uB)
∀-i

∀R.(A uB)
v-i

∀R.A u ∀R.B v ∀R.(A uB)

NDALC is a conservative extension of the classical propositional calculus.

To see that, let ∆ be a set of formulas of the form {γ1, . . . , γk, α1 →
β1, . . . , αn → βn}, where each γi, αi and βi are propositional formulas and

αi and βi do not have any occurrence of →. One can easily verify that any

propositional classical consequence ∆ |= α is justified by a proof in classical

ND. Now trasform this proof into a proof in NDALC by replacing each → by

v.

Since NDALC is a conservative extension of the classical propositional

ND system that has the generalization as a derived rule, and, proves axiom

∀R.(A u B) ≡ (∀R.A u ∀R.B), we have the completeness for NDALC by a

relative completeness to the axiomatic presentation of ALC. �

V.4 Normalization theorem for NDALC
In this section we prove the normalization theorem for NDALC. It is worth

nothing that the usual reductions for obtaining a normal proof in classical pro-

positional logic also applies to NDALC. Thus, the first thing to observe is that

we follow Prawitz’s [49] approach incremented by Seldin’s [62] permutation

rules for the classical absurdity ⊥c. That is, using a set of permutative rules,

we move any application of ⊥c-rule downwards the conclusion. After this trans-

formation we end up with a proof having in each branch at most one ⊥c-rule

application as the last rule of it.

In order to move the absurdity rule downwards the conclusion and

also to have a more succinct proof we restrict the language to the fragment

{¬,∀,u,v}. This will not limit our results since any ALC formula can be

rewritten in an equivalent one in this restricted fragment. We shall consider

the system ND−ALC obtained from NDALC by removing from NDALC t-rules

and ∃-rules. The Proposition 28 states that the system ND−ALC is essentially

just a syntactic variation of NDALC system.

Chapter V. A Natural Deduction for ALC 63

Proposition 28 The NDALC t-rules and ∃-rules are derived in ND−ALC.

Proof : Considering the concept description Lα t β being defined by
L¬(¬α u ¬β) and the concept description L∃R.α by L¬∀R.¬α.

The rules (t-i) can be derived as follows:

Lα

[
¬L(¬α u ¬β)

]1

¬L¬α
u-e

⊥ ¬-e

L¬(¬α u ¬β)
¬-i

Lβ

[
¬L(¬α u ¬β)

]1

¬L¬β
u-e

⊥ ¬-e

L¬(¬α u ¬β)
¬-i

where L contains only existencial quantified labels. ¬L as described in Sec-

tion III.1, is the negation of L, that is, universal quantified are changed to

existential quantified and vice-versa. We note that rule t-i proviso requires

that L contains only existential quantified labels, what makes the rule u-e

proviso satisfied since ¬L will only contains universal quantified labels. The

rule t-e can also be derived:

[
Lα
]

....
γ [¬γ]

⊥
¬L¬α

[
Lβ
]

....
γ [¬γ]

⊥
¬L¬β

¬L(¬α u ¬β) L¬(¬α u ¬β)

⊥
γ

For rules (∃-i) and (∃-e), it is worth noting that ND−ALC does not restrict

the occurrence of existential labels, only the existential constructor of ALC. In

other words, we have just reused the ALC constructors ∀ and ∃ to “type” the

labels and keep track of the original role quantification when it is promoted

to label. Nevertheless, although the confusion could be avoided if we adopted

¬∀R instead of ∃R in the labels of ND−ALC concepts, for clear presentation

we choose to allow ∃R on ND−ALC concept’s labels.

L,∃Rα

[¬L∀R.¬α]
(¬L),∀R¬α
⊥

L¬∀R.¬α

[
(¬L),∀R¬α

]
¬L∀R.¬α L¬∀R.¬α

⊥
L,∃Rα

�

Chapter V. A Natural Deduction for ALC 64

In the sequel, we adopt Prawitz’s [50] terminologies such as: formula-tree,

deductions or derivations, rule application, minor and major premises, threads,

branches and so on. Nevertheless some terminologies have different definition

in our system, in that case, we will present that definition.

A branch in a NDALC or ND−ALC deduction is an initial part

α1, α2, . . . , αn of a thread such that αn is either (i) the first formula occur-

rence in the thread that is a minor premise of an application of v-e or (ii) the

last formula occurrence of a thread (the end-formula of the deduction) if there

is no such premise in the thread.

Given a deduction Π on NDALC or ND−ALC, we define the height of a

formula occurrence α in Π inductively:

– if α is the end-formula of Π (conclusion), then h(α) = 0;

– if α is a premise of a rule application, say λ, in Π and is not the end-

formula of Π, then h(α) = h(β) + 1 where β is the conclusion of λ.

In a similar matter we can define the height of a rule application in a deduction.

A maximal formula is a formula occurrence that is consequence of an

introduction rule and the major premise of an elimination rule. A maximal

v-formula in a proof Π is a maximal formula that is a subsumption.

Lemma 29 Let Π be a proof of α (concept or subsumption of concepts) from

∆ in ND−ALC. Then there is a proof Π′ without maximal v-formulas.

Proof : We prove Lemma 29 by induction over the number of maximal v-

formulas occurrences. We apply a sequence of reductions choosing always

a highest maximal v-formula occurence in the proof tree. In the reduction

shown below we note that α cannot be a subsumpption, so that, the reduction

application will never introduce new maximal v-formulas. In other words, we

cannot have nested subsumptions, subsumptions are not concepts.

Π1
α

[α]
Π2

β

α v β

β �

Π1

[α]
Π2

β

�

Lemma 30 (Moving ⊥c downwards on branches) If Ω `ND−ALC α, then

there is a deduction Π in ND−ALC of α from Ω where each branch in Π has

at most one application of ⊥c-rule and, whenever it has one, it is one of the

following cases: (i) the last rule applied in this branch; (ii) its conclusion is the

premisse of a v-i application, being this v-i the last rule applied in the branch.

Chapter V. A Natural Deduction for ALC 65

Proof : Let Π be a deduction in ND−ALC of α (subsumption of concepts or

concept) from a set of hypothesis ∆. Let λ be an application of a ⊥c-rule in Π

with h(λ) = d such that there is no other application of ⊥c-rule above λ. Let

us consider each possible rule application immediately below λ. For each case,

we show how one can exchange the rules decreasing the height of λ.

Rule ∀-e

[¬L¬∀R.α]
....
⊥

L∀R.α
L,∀Rα �

[L∀R.α]
L,∀Rα [¬L,∃R¬α]

⊥
¬L¬∀R.α....
⊥

L,∀Rα

Rule ∀-i

[¬L,∃R¬α]
....
⊥

L,∀Rα
L∀R.α �

[L,∀Rα]
L∀R.α

[¬L¬∀R.α]
⊥

¬L,∃R¬α....
⊥

L∀R.α

Rule u-i

∃L¬α....
⊥
∀Lα

Π
∀Lβ

∀L(α u β) �

[∀Lα]2
Π
∀Lβ

∀L(α u β)
[
∃L¬(α u β)

]1

⊥
∃L¬α

2

....
⊥

∀L(α u β)
1

Rule u-e

∃L¬(α u β)
....
⊥

∀L(α u β)
∀Lα �

[∃L¬α]2
[
∀L(α u β)

]1

∀Lα

⊥
∃L¬(α u β)

1

....
⊥
∀Lα

2

Chapter V. A Natural Deduction for ALC 66

Rule ¬-e

[¬L¬α]
....
⊥
Lα

[∆]
Π

¬L¬α
⊥ �

[
Lα
] [∆]

Π
¬L¬α
⊥

¬L¬α....
⊥

One must observe that in all reductions above, the conclusion of ⊥c rule

application is the premise of the rule considered in each case. That is why

the ¬-i rule was not considered, if so, the conclusion of ⊥c rule would

have to be a ⊥, wish is prohibit by the restriction on ⊥c-rule.

Rule v-e

[¬α]
Π1

⊥
α

Π2

α v β

β �

[α]1
Π2

α v β

β [¬β]2

⊥
¬α 1

Π1

⊥
β

2

�

The reductions below will be used in the induction step in Theorem 31.

Let Π be a deduction of α from Ω which contains a maximal formula

occurrence F . We say that Π′ is a reduction of Π at F if we obtain Π′ by

removing F using the reductions below. Since F clearly can not be atomic,

each reduction refers to a possible principal sign of F . If the principal sign of

F is ψ, then Π′ is said to be a ψ-reduction of Π. In each case, one can easily

verify that Π′ obtained is still a deduction of α from Ω.

u-reduction

Π1
∀Lα

Π2
∀Lβ

∀L(α u β)
∀Lα �

Π1
∀Lα

∀-reduction

Π1
L,∀Rα
L∀R.α
L,∀Rα �

Π1
L,∀Rα

Chapter V. A Natural Deduction for ALC 67

¬-reduction [
Lα
]

Π1

⊥
¬L¬α

Π2
Lα

⊥ �

Π2[
Lα
]

Π1

⊥

The fact that DL has no concept internalizing v imposes quite particular

features on the form of the normal proofs in NDALC.

A ND−ALC deduction is called normal when it does not have maximal

formula occurrences. Theorem 31 shows how we can construct a normal

deduction in ND−ALC.

Consider a deduction Π in ND−ALC. Applying Lemma 29 we obtain a new

deduction Π′ without any maximal v-formulas. Then we apply Lemma 30 to

reduce the number of applications of ⊥c-rule on each branch and moving the

remaining downwards to the end of each branch. Without loss of generality

we can from now on consider any deduction in ND−ALC as having no maximal

v-formula and at most one ⊥c-rule application per branch, namely, the last

one application in the branch.

Theorem 31 (normalization of NDALC) If Ω `ND−ALC α, then there is a

normal deduction in ND−ALC of α from Ω.

Proof : Let Π be a deduction in ND−ALC having the form remarked in the

previous paragraph. Consider the pair (d, n) where d is the maximum degree

among the maximal formulas, and n is the number of maximal formulas with

degree d. We proceed the normalization proof by induction on the lexicographic

pair (d, n).

Let F be one of the highest maximal formula with degree d and consider

each possible case according the principal sign of F .

If F has as principal sign u, applying the u-reduction we get a new

deduction Π1 with complexity (d1, n1). We now have d1 ≤ d, depending on the

existence of other maximal u-formulas on Π. If d1 = d, then necessarily n1 < n.

The cases where the principal sign of F is ¬ or ∀ are similar. Two facts can be

observed. First, the v-reduction will not be used anymore, since Π does not

have any remaining maximal v-formula. Second, although the ¬-reduction

can increase the number of maximal formulas, those maximal formulas will

undoubtedly have degree less than d, so that, we indeed have (d1, n1) < (d, n).

So induction hypothesis we have that Π1 is normalizable and so is Π for each

principal sign considered. �

As we have already mentioned NDALC has no concept internalization v.

This imposes quite particular form of the normal proofs in ND−ALC. Consider

Chapter V. A Natural Deduction for ALC 68

a thread in a deduction Π in ND−ALC, such that no element of the thread is a

minor premise of v-e rule. We shall see that if Π is normal, the thread can be

divided into two parts. There is one formula occurrence A in the thread such

that all formula occurrences in the thread above A are premises of applications

of elimination rules and all formula occurrences below A in the thread (except

the last one) are premises of applications of introduction rules. Therefore, in

the first part of the thread, we start from the top-most formula an decrease the

complexity of that until A. In the second part of the thread we pass to more

and more complex formulas. Given that, A is said thus the minimum formula

in the thread. Moreover, each branch on Π has at most one application of ⊥c
rule as its last rule application.

Normalization is important since form it one can provide complete

procedure to produce canonical proofs in ALC. Canonical proofs are important

regarding explaining theoremhood.

VI
Towards a proof theory for ALCQI

Some pratical applications require a more expressive DL. For instance, if

we want to formalize and reasoning over ER or UML diagrams using DL, we

will need to move to ALCQI [4, 17, 15, 14, 16].

In this chapter we present a Sequent Calculus and a Natural Deduction

forALCQI description logic. These calculi are the first step towards extensions

for the previously presented systems to more expressive description logics. In

Section VII.3, we present a pratical use of the NDALCQI for reasoning over an

UML diagram.

VI.1 ALCQI Introduction

ALCQI is an extension of ALC with number restrictions and inverse

roles.

C ::= ⊥ | A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C |≤ nR.C |≥ nR.C

R ::= P | P−

where A stands for atomic concepts and R for atomic roles. Some of the above

operators can be mutually defined: (i) ⊥ for Au¬A; (ii) > for ¬⊥; (iii) ≥ kR.C

for ¬(≤ k − 1R.C); (iv) ≤ kR.C for ¬(≥ k + 1R.C); (v) ∃R.C for ≥ 1R.C.

An ALCQI theory is a finite set of inclusion assertions of the form

C1 v C2. The semantics of ALCQI constructors and theories is analogous

to that of ALC. The semantics for qualified number restrictions are presented

in Section II.3. The semantics of inverse roles is:

(P−)I = {(a, a′) ∈ ∆I ×∆I | (a′, a) ∈ P I}

The next sections presents a sequent calculus for ALCQI named

SCALCQI . In Section VI.2 we present the system and in Section VI.3 we prove

its soundness. The proof of SCALCQ completeness should be obtained follow-

ing the same strategy used for SCALC. A version of SCALCQ can be designed

Chapter VI. Towards a proof theory for ALCQI 70

along the same basic idea used to design the SC[]ALC. Afterwards, provision

of counter-example from fully expanded trees that are not proofs must be

obtained.

VI.2 The Sequent Calculus for ALCQI
The SCALCQI sequent calculus is a conservative extension of SCALC

system to deal with qualified number restriction. The syntax for labeled

concepts is modified to accept upper (at-most) and lower (at-least) bounds

labels:

LB ::= ∀R | ∃R |≤ nR |≥ nR

R ::= P | P−

L ::= LB,L | ∅

φlc ::= Lφc

where n range over natural numbers, R over atomic role names and C over

ALCQI concepts.

The translation of SCALCQI labeled concept to their ALCQI concept

counterpart is straightforward. That is, we can easily extend the definiton of

the σ function presented in Section III.1. For instance, ≥nRα is equivalent of

≥ nR.α and ≤nRα is equivalent of ≤ nR.α. Finally, we observe that ALCNI
is trivially obtained from ALCQI if we restrict qualified number restriction

labels only to the > concept.

The SCALCQI system is presented at Figures VI.1, VI.2, VI.3 and VI.4

where L , stands for list of labels. In some rules, we superscribe the list of

labels with the kind of labels allowed on it. For example, in rule u-l, we retrict

L to contain only ∀R or ≥ nR labels. We use the notation L∀≤. Moreover, for

easier understading, some provisos regarding the order relation between the

number n and m are presented on the left of some rules. The provisos of rules

∀-r, ∀-l, prom-∃, prom-∀, t-l and t-r are the same presented in Section III.1.

Moreover, we have the following additional provisos:

– Rules ¬-l and ¬-r, the list of labels L cannot have number restrictions

≤ nR nor ≥ nR for any R;

– Rule u-l, L cannot have ≤ nR nor ∃R labels;

– Rule u-r, L cannot have ≥ nR nor ∃R labels;

– Rule t-l, L cannot have ≥ nR nor ∀R labels;

– Rule t-r, L cannot have ≤ nR nor ∀R labels;

Chapter VI. Towards a proof theory for ALCQI 71

– Rule prom-≥, for all Lδ ∈ ∆, L must only contain ≥ nR or ∀R labels.

For all Lγ ∈ Γ, L must only contain ≥ nR or ∃R labels.

α⇒ α ⊥ ⇒ α

n ≤ m ≤nR,Lα⇒ ≤mR,Lα
n ≥ m ≥nR,Lα⇒ ≥mR,Lα

Figure VI.1: The System SCALCQI : the axioms

∆⇒ Γ
weak-l

∆, δ ⇒ Γ
∆⇒ Γ

weak-r
∆⇒ Γ, γ

∆, δ, δ ⇒ Γ
contraction-l

∆, δ ⇒ Γ

∆⇒ Γ, γ, γ
contraction-r

∆⇒ Γ, γ

∆1, δ1, δ2,∆2 ⇒ Γ
perm-l

∆1, δ2, δ1,∆2 ⇒ Γ

∆⇒ Γ1, γ1, γ2,Γ2 perm-r
∆⇒ Γ1, γ2, γ1,Γ2

∆1 ⇒ Γ1,
Lα Lα,∆2 ⇒ Γ2

cut
∆1,∆2 ⇒ Γ1,Γ2

Figure VI.2: The System SCALCQI : structural rules

Besides the rules inherited from SCALC with some extra provisos,

SCALCQI specific rules are: (1) the rules shift-≤|≥-{l,r} that increase (decrease)

labels upper (lower) bounds; (2) the rules ≤ ∃-{l,r} and ∃ ≤-{l,r} transform

quantified number restricted labels into existential and the order way around.

Before present the soundness and completeness of SALC system, let us

first present a simple example of its usage. The following proof draws the

conclusion everyone that have at least one child male or at least one child

female have a child in ALCQI terms.

Example 5 In the proof below, Fem is an abbreviation for Female and child

for hasChild.

Chapter VI. Towards a proof theory for ALCQI 72

∆, L
∀≥
α, L

∀≥
β ⇒ Γ

u-l

∆, L
∀≥

(α u β)⇒ Γ

∆⇒ Γ, L
∀≤
α ∆⇒ Γ, L

∀≤
β

u-r

∆⇒ Γ, L
∀≤

(α u β)

∆, L
∃≤
α⇒ Γ ∆, L

∃≤
β ⇒ Γ

t-l

∆, L
∃≤

(α t β)⇒ Γ

∆⇒ Γ, L
∃≥
α, L

∃≥
β

t-r

∆⇒ Γ, L
∃≥

(α t β)

∆⇒ Γ, ¬L
∀∃
α

¬-l

∆, L
∀∃¬α⇒ Γ

∆, ¬L
∀∃
α⇒ Γ

¬-r

∆⇒ Γ, L
∀∃¬α

Figure VI.3: The System SCALCQI : u, t and ¬ rules

Fem⇒ Fem
∃childFem⇒ ∃childFem
≥1childFem⇒ ∃childFem
≥1childFem⇒ ∃childMale, ∃childFem
≥1childFem⇒ ∃child(Male t Fem)
≥1childFem⇒ ∃child.(Male t Fem)

≥ 1child.Fem⇒ ∃child.(Male t Fem)

Male⇒Male
∃childMale⇒ ∃childMale
≥1childMale⇒ ∃childMale
≥1childMale⇒ ∃childMale, ∃childFem
≥1childMale⇒ ∃child(Male t Fem)
≥1childMale⇒ ∃child.(Male t Fem)

≥ 1child.Male⇒ ∃child.(Male t Fem)

≥ 1child.Male t ≥ 1child.Fem⇒ ∃child.(Male t Fem)

VI.3 SCALCQI Soundness
Theorem 32 (SALCQ is sound) Considering Ω a set of sequents, a theory

presentation or a TBox, let an Ω-proof be any SALCQ proof in which sequents

from Ω are permitted as initial sequents (in addition to the logical axioms).

The soundness of SALCQ states that if a sequent ∆⇒ Γ has an Ω-proof, then

∆⇒ Γ is satisfied by every interpretation which satisfies Ω. That is,

if Ω `SCALCQI ∆⇒ Γ then Ω |=
l

δ∈∆

σ (δ) v
⊔
γ∈Γ

σ (γ)

for all interpretation I.

Proof : We proof Theorem 32 by induction on the length of the Ω-proofs. The

length of a Ω-proof is the number of applications for any derivation rule of the

calculus.

For the base case, proofs with length zero are proofs Ω ` ∆ ⇒ Γ where

∆⇒ Γ occurs in Ω. In that case, it is easy to see that the theorem holds.

As inductive hypothesis, we will consider that for proofs of length n the

theorem holds. It is now sufficient to show that each of the derivation rules

preserves the truth. That is, if the premises holds, the conclusion must also

Chapter VI. Towards a proof theory for ALCQI 73

∆, L,∀Rα⇒ Γ
∀-l

∆, L(∀R.α)L2 ⇒ Γ

∆⇒ Γ, L,∀Rα
∀-r

∆⇒ Γ, L(∀R.α)

∆, L,∃Rα⇒ Γ
∃-l

∆, L(∃R.α)⇒ Γ

∆⇒ Γ, L,∃Rα
∃-r

∆⇒ Γ, L(∃R.α)

∆, L,≤nRα⇒ Γ
≤-l

∆, L≤ nR.α⇒ Γ

∆⇒ Γ, L,≤nRα
≤-r

∆⇒ Γ, L≤ nR.α

∆, L,≥nRα⇒ Γ
≥-l

∆, L≥ nR.α⇒ Γ

∆⇒ Γ, L,≥nRα
≥-r

∆⇒ Γ, L≥ nR.α

∆, ≥nR,Lα⇒ Γ
n ≤ m shift-≥-l

∆, ≥mR,Lα⇒ Γ

∆⇒ ≥nR,Lα,Γ
n ≥ m shift-≥-r

∆⇒ ≥mR,Lα,Γ

∆, ≤nR,Lα⇒ Γ
n ≥ m shift-≤-l

∆, ≤mR,Lα⇒ Γ

∆⇒ ≤nR,Lα,Γ
n ≤ m shift-≤-r

∆⇒ ≤mR,Lα,Γ

∆, ≥1R,Lα⇒ Γ
≥ ∃-l

∆, ∃R,Lα⇒ Γ

∆⇒ Γ, ≥nR,Lα
n ≥ 1 ≥ ∃-r

∆⇒ Γ, ∃R,Lα

∆, ∃R,Lα⇒ Γ
n ≥ 1 ∃ ≥-l

∆, ≥nR,Lα⇒ Γ

∆⇒ Γ, ∃R,Lα
∃ ≥-r

∆⇒ Γ, ≥1R,Lα

∆, ∃R,L1α⇒ L2β,Γ
∃-inv

∆, L1α⇒ ∀R−,L2β,Γ

∆, L1α⇒ ∀R−,L2β,Γ
inv-∃

∆, ∃R,L1α⇒ L2β,Γ

∆⇒ Γ prom-≥
+≥nR∆⇒ +≥nRΓ

δ ⇒ γ
prom-≤

+≤nRγ ⇒ +≤nRδ

δ ⇒ Γ prom-∃
+∃Rδ ⇒ +∃RΓ

∆⇒ γ
prom-∀

+∀R∆⇒ +∀Rγ

Figure VI.4: The system SCALCQI : ∀, ∃, ≤, ≥ and inverse rules

Chapter VI. Towards a proof theory for ALCQI 74

hold. Remembering from Section III.1 that the natural interpretation of a

sequent ∆⇒ Γ (∆ and Γ range over labelled concepts) is the ALC formula

l

δ∈∆

σ (δ) v
⊔
γ∈Γ

σ (γ)

For clear presentation, we will sometimes omit the translation from labelled

concepts to ALCQ concepts and directly take ∆ as the conjunction of ALCQ
concepts and Γ as the disjunction of ALCQ concepts and assume that ∆⇒ Γ

has ∆ v Γ as a natural interpretation.

For rules on Figure VI.2, we can apply standard set theory. The proof of

their soundness are the same presented in Section III.2 for SALC. For instance,

let us consider A,B,C,D and X sets. Rules weak-l and weak-r following from

(A ∩ B) ⊆ A and A ⊆ (A ∪ B). Rules contraction-l and contraction-r follows

from A∩A = A and A∪A = A. In rules perm-l and perm-r, the premises and

conclusions have the same semantics. The cut rule is also easily justified by set

theory: if A ⊆ (B ∪X) and (X ∩ C) ⊆ D, we must have (A ∩ C) ⊆ (B ∪D).

In Figure ??, rules ∀-l, ∀-r, ∃-l, ∃-r, ≤-l, ≤-r, ≥-l and ≥-r represent

steps in the translation of labelled concepts to ALCQ concepts (reading top-

bottom), so that, premises and conclusion have the same semantics, if the

former subsumption holds, the later will also hold.

Rule ∃ ≥-l is sound regarding the SALCQ semantic fact that ≥ nR.A v
∃R.A if n ≥ 1. If we take A = ∆I , B = ΓI , C = (≥1R,Lα)I and D = (∃R,Lα)I

for any given I. Then we can conclude that if A∩C ⊂ B (premise) and C ⊂ D

(fact) then A ∩D ⊂ B (conclusion).

The argument to show rule ∃ ≥-r soundness is similar, Considering now

the fact that ∃R.A ≡ ≥ 1R.A follows from the ALCQ semantics, we can show

that: if we take A = ∆I , B = ΓI , C = (∃R,Lα)I and D = (≥1R,Lα)I for any

given I, then if A ⊂ B ∪ C (premise) and C ≡ D (fact) then A ⊂ B ∪ D
(conclusion).

Rules ¬-l and ¬-r do not deal with quantified labeled concepts, their

soundess were provided in Section III.2.

From the ALCQ semantics, we know that if n ≤ m: (1) ≥ mR.C v ≥
nR.C; and (2) ≤ nR.C v ≤ mR.C for any concept C. Taking A = ∆I and

B = ΓI for any I, rules shift-≥-l and shift-≤-r are sound:

– if A ∩ (≥nR,Lα)I ⊆ B (premise), and ≥mR,Lα ⊆ ≥nR,Lα (by 1 if n ≤ m),

then A ∩ (≥mR,Lα)I ⊆ B (conclusion);

– if A ⊆ (≤nR,Lα)I ∪ B (premise) and ≤nR,Lα ⊆ ≤mR,Lα (by 2 if n ≤ m),

then A ⊆ (≤mR,Lα)I ∪B (conclusion);

Chapter VI. Towards a proof theory for ALCQI 75

Rules shift-≤-l and shift-≥-r are similar, using the same semantics facts

1 and 2 above.

Diagram 1 Diagram 2

≤ nR.(A tB) //

�� **TTTTTTTTTTTTTTT
≤ nR.A

��

≤ nR.B // (≤ nR.A) t (≤ nR.B)

≥ nR.(A tB) ≥ nR.A

��

oo

≥ nR.B //

OO

(≥ nR.A) t (≥ nR.B)

jjTTTTTTTTTTTTTTT

Diagram 3 Diagram 4

≤ nR.(A uB) ≤ nR.Aoo

≤ nR.B

OO

(≤ nR.A) u (≤ nR.B)

OO

oo

jjTTTTTTTTTTTTTTT

≥ nR.(A uB) //

�� **TTTTTTTTTTTTTTT
≥ nR.A

≥ nR.B (≥ nR.A) u (≥ nR.B)

OO

oo

Figure VI.5: The inclusion diagrams for ≤ and ≥ over t and u. The arrow
A→ B means A v B.

For rules t-l, t-r, prom-∃, prom-∀, u-l and u-r we use the inclusion

relations expressed in the diagrams of Figure VI.5. The arrows in the Figure

indicate the inclusion direction, that is, if A→ B, than A v B. Following the

traditional proof theory terminology for sequent calculi, we call the principal

formula, the formula occurring in the lower sequent of the inference which is not

in the designated sets (∆ and Γ) and the auxiliary formulas are the formulas

from the premises, subformulas of the principal formula in the conclusion.

Rule t-l with the proviso that the lists labels in auxiliary formulas can

only contain ∃R or ≤ nR labels for any role R and integer n is sound. This

follows from: (1) the diagram 1 in the figure that shows that the union of

the interpretation of auxiliary formulas is subset of the interpretation of the

principal formula; and (2) the set theory fact that if A ⊆ C, B ⊆ C and

X ⊆ A ∪B then X ⊆ C.

Rule t-r with the proviso that the list of labels in auxiliary formulas does

not contain labels rather than ∃R and ≥ nR for any role R and integer n is also

sound. This follows from: (1) diagram 2 which shows that the interpretation of

the principal formula contains the union of the interpretation of the auxiliary

formulas; and (2) the set theory fact that if A ⊆ B ∪ C and B ∪ C ⊆ X then

A ⊆ X.

Rule u-l providing that labels of auxiliary formulas does not contain

labels rather than ∀R and ≥ nR is sound given that: (1) diagram 4 shows

that the intersection of the (interpretation of) the premises contains the

interpretation of the conclusion, for any interpretation function; and (2) the

Chapter VI. Towards a proof theory for ALCQI 76

set theory transitive property of the inclusion relation, that is, if A ∩ B ⊆ C

and X ⊆ A ∩B then X ⊆ C.

The soundness of rule u-r, providing that the list of labels of auxiliary

formulas contain only ∀ and ≤ nR labels is proved with: (1) diagram 3 that

shows that the intersection of the interpretation of the auxiliary formulas is

included in the principal formula; (2) the fact that if A ⊆ B, A ⊆ C and

B ∩ C ⊆ X then A ⊆ X.

The proof of rules inv-∃ and ∃-inv soudness derives from the fact that

A v ∀R−.B if and only if ∃R.A v B. For clear presentation, we can state this

fact as a rule in a natural deduction style:

(2) ∃R.A v B

(1) A v ∀R−.B inv∗

Now we have only to prove the double soundess of the above rule and consider

A ≡ L1α and B ≡ L2β.

Case 1 → 2. Let v ∈ ∃R.AI = {v | (v, u) ∈ RI ∧ u ∈ AI} thus ∃u ∈ AI

such that (v, u) ∈ RI and hence (u, v) ∈ (R−)I . But from (1) we have that

u ∈ ∀R−.BI , thus ∀v((u, v) ∈ (R−)I → v ∈ BI), hence v ∈ BI we conclude

(2). Note also that this conclusion also holds if RI = ∅.
Case 2→ 1. Let us assume that there is a (v, u) ∈ RI , so, v ∈ ∃R.AI and

hence v ∈ BI , by (2). We have (u, v) ∈ (R−)I so ∀v((u, v) ∈ (R−)I → v ∈ BI)
and hence u ∈ ∀R−.BI . If for some u ∈ AI there is no v such that (v, u) ∈ RI

then u ∈ ∀R−.BI , vacously.

�

VI.4 On SCALCQI Completeness

The proof of SCALCQI completeness should be obtained following the

same strategy used for SCALC. A deterministic version of SCALCQI can be

designed along the same basic idea used on SC[]ALC. Afterwards, provision

of counter-example from fully expanded trees that are not proofs must be

obtained.

Next, we show briefly how to provide a counter-example for a top-sequent

that is not an axiom (initial sequent) in a fully expanded tree. Let us consider

the full expanded tree in the sequel.

Example 6 The bottom sequent represents an unsatisfiable subsumption.

Clearly, it is not true that all people with at least two children necessarily

have one child male and the other female. In the proof, F stands for Female,

M for Male and child for hasChild.

Chapter VI. Towards a proof theory for ALCQI 77

M ⇒ M
∃childM ⇒ ∃childM

F ⇒ M
∃childF ⇒ ∃childM

∃child(M t F)⇒ ∃childM
≥1child(M t F)⇒ ∃childM
≥2child(M t F)⇒ ∃childM
≥2child(M t F)⇒ ∃child.M

M ⇒ F
∃childM ⇒ ∃childF

F ⇒ F
∃childF ⇒ ∃childF

∃child(M t F)⇒ ∃childF
≥1child(M t F)⇒ ∃childF
≥2child(M t F)⇒ ∃childF
≥2child(M t F)⇒ ∃child.F

≥2child(M t F)⇒ ∃child.M u ∃child.F
≥ 2child.(M t F)⇒ ∃child.M u ∃child.F

Starting from any top-sequent that are not initial, one can easily con-

struct an interpretation I such that

I 6|= ≥ 2hasChild.(MaletFemale) v ∃hasChild.Maleu ∃hasChild.Female

Following [1, section 2.3.2.1] style, we use ABox assertions to represent the

restrictions about the interpretation I = (∆, I) that we intend to construct.

We started from the top-sequent Female ⇒ Male and constructed A1 that

falsifies it. The ABox A2, an extension of A1, is than constructed to falsify
∃hasChildFemale⇒ ∃hasChildMale. A2 falsifies all subsequent sequents until

≥n hasChild(Male t Female)⇒ ∃hasChildMale

is reached. In order to falsify it we constructed A3 from A2. The main idea is

that for each rule application, given a interpretation that falsifies its premise,

one can provide an interpretation that falsifies its conclusion. From the natural

interpretation of a sequent, Section III.1, we know that in order to falsify a

sequent ∆⇒ Γ, an interpretation must contain an element c such that c ∈ ∆I

and c /∈ ΓI .

A1 = {Female(f1)}

A2 = A1 ∪ {hasChild(a, f1)}

A3 = A2 ∪ {hasChild(a, f2), Female(f2)}

(1)

The desired interpretation I can than be extracted from A3:

∆I = {a, f1, f2}, FemaleI = {f1, f2}, hasChildI = {(a, f1), (a, f2)} (2)

VI.5 A Natural Deduction for ALCQI
The Natural Deduction for ALCQI, named NDALCQI , is presented in

Figure VI.6. NDALCQI is an extension of the system NDALC presented in

Chapter VI. Towards a proof theory for ALCQI 78

Chapter V.

When dealing with theories, sometimes is more convenient to have the

following rule, since theories must be closed under generalizations.

α v β
∀Rα v ∀Rα

NDALCQI normalization and completeness is not presented in this thesis.

A completeness proof for NDALCQI should follow from a (technically heavy)

mapping from a complete Sequent Calculus for ALCQI to NDALCQI .

Assuming that normalization holds for NDALCQI , one can define a

proof procedure for NDALCQI . Initially decompose the (candidate) conclusion

(α v β) by means of introduction rules applied bottom-up, until atomic labeled

concepts. For each atomic concept, one chooses an hypothesis from ∆ and by

decomposing it, by means of elimination rules, tries to achieve this very atomic

(labeled) concept. This allows us to derive a (complete) proof procedure for the

logic, decomposing the conclusions and the hypothesis until atomic levels an

proving one set using the other. In our case we are interested in applying this

proof procedure on top of theories. In the sequel we show NDALCQI soundness.

VI.6 NDALCQI Soundness

This section extends the results of Section V.2 to prove that NDALCQI

rules are sound. We adopted here the same notations used in Section V.2.

Moreover, most part of the proof use results from Section VI.3.

Theorem 33 NDALCQI is sound regarding the standard semantics of ALCQI.

That is,

if Ω ` γ then Ω |= γ

Proof : It follows direct from Lemma 34. �

Lemma 34 Let Π be a deduction in NDALCQI of F with all hypothesis in

Ω = (C,S), then if F is a concept:

S |=
l

A∈C
A v F

and if F is a subsumption A1 v A2:

S |=
l

A∈C
A u A1 v A2

Proof : The proof of Lemma 25 is done by induction on the height of a proof

tree Π represented by | Π |. The proof of NDALCQI rules soundness is similar

from the proof of soundness of their counterparts in NDALC.

Chapter VI. Towards a proof theory for ALCQI 79

L∀≥(α u β)
L∀≥α

u-e

L∀≥(α u β)
L∀≥β

u-e
L∀≤α L∀≤β
L∀≤(α u β)

u-i

L∃≤(α t β)

[L
∃≤
α]

....
γ

[L
∃≤
β]

....
γ

γ t-e

L∃≥α
L∃≥(α t β)

t-i
L∃≥β

L∃≥(α t β)
t-i

L∀∃α ¬L∀∃¬α
⊥ ¬-e

[L
∀∃
α]

....
⊥

¬L∀∃¬α
¬-i

[¬L
∀∃¬α]

....
⊥

L∀∃α
⊥c

L∃R.α
L,∃Rα

∃-e
L,∃Rα
L∃R.α

∃-i
L∀R.α
L,∀Rα

∀-e

L,∀Rα
L∀R.α

∀-i
L≤ nR.α
L,≤nRα

≤ -e
L,≤nRα

L≤ nR.α
≤ -i

L≥ nR.α
L,≥nRα

≥ -e
L,≥nRα

L≥ nR.α
≥ -i

∃R,Lα
≥1R,Lα

≥ ∃
≥nR,Lα
∃R,Lα

∃ ≥ (n ≥ 1)

≥mR,Lα
≥nR,Lα

− ≥ (m ≥ n)
≤mR,Lα
≤nR,Lα

+ ≥ (m ≤ n)
Lα
∀R,Lα

Gen

L1α L1α v L2β
L2β

v -e

[L1α]
....

L2β
L1α v L2β

v -i
∃R,L1α v L2β
L1α v ∀R−,L2β

inv

Figure VI.6: The Natural Deduction system for ALCQI

Chapter VI. Towards a proof theory for ALCQI 80

Base case This case is similar from the proof of Lemma 34. If | Π |= 1 then

Ω ` Lα is such that Lα is in Ω. In that case, is easy to see that Lemma 34

holds since by basic set theory (A ∩B) ⊆ A for all A and B.

Rule u-e this rule has one additional proviso that must be taken into

account, namely, besides ∀R roles, the label of the premise may only contain

≥ nR roles. By induction hypothesis, if

Π1
L(α u β) is a derivation with all

hypothesis in {C,S} then S |= C v L(α u β). From Diagram 4 on Figure VI.5

and Axiom 1 we know that L(α u β) v Lα u Lβ and from basic set theory
Lα u Lβ v Lα so S |= C v Lα as desired.

Rule u-e let us take the proof of soudness of its counterpart in Section V.2

and consider the additional proviso that L may only contain ∀R and ≤ nR

labels. Given S1∪S2 |= (C1uC2) v LαuLβ (by arguments of Section V.2) and
Lα u Lβ v L(α u β) by Diagram 3 on Figure VI.5 and Axiom 1, we can write

S1 ∪ S2 |= (C1 u C2) v L(α u β).

t-e and t-i As in the cases above, the proof is similar of their counterparts

in Section V.2. We have also to consider diagrams 1 and 2 on Figure VI.5 to

prove that L∃≥α t L∃≥β v L∃≥(α t β) and L∃≤(α t β) v L∃≤α t L∃≤β.

Rules ¬-{i,e} and ⊥-c are the same of NDALC since they do not handle

number restrictions and inverse. Rules ∀-{i,e}, ∃-{i,e}, ≤-{i,e} and ≥-{i,e}
have the same semantics of their premise and conclusion, thus they are sound.

The soundness of − ≥ and + ≥ are direct consequence of the ALCQI
semantics and they are actually used to prove the soundness of SCALCQI shift

rules in Section VI.3.

Rule inv is not only sound but also double sound, once more, we point

to the proof of soundness in Section VI.3.

The soundness of the remain rules Gen and v-{i,e} are consequence of

the soundness of their counterparts in NDALC, see Section V.2. �

VII
Proofs and Explanations

VII.1 Introduction

From a logical point of view, the conceptual modeling tasks can be

summarized by the following steps:

1. Observe the “world”;

2. Determine what is relevant;

3. Choose or define your terminology by means of non-logical linguistic

terms;

4. Write down the main laws, the axioms, governing your “world”;

5. Verify the correctness (sometimes completeness too) of your set of laws,

that is, the theory constructed.

Steps 1, 2 and 3 may be facilitated by the use of an informal notation

(UML, ER, Flow-Charts, etc) and their respective methodology, but it is

essentially “Black Art” [42]. Step 4 demands quite a lot of knowledge of the

“world” begin specified (the model). Step 5 essentially provides finitely many

tests as support for the correctness of an infinite quantified property.

A deduction of a proposition α from a set of hypothesis Γ is essentially a

mean of convincing that Γ entails α. When validating a theory, represented by

a set of logical formulas, we mainly test entailments, possibly using a theorem

prover. Considering a model M specified by the set of axioms Spec(M), given

a property φ about M , from the entailment tests results one can rise the

following questions:

1. If M |= φ and Spec(M) ` φ, why φ is truth? One must provide a proof

of φ;

2. If M |= φ, but Spec(M) 6` φ from the attempt to construct the proof

of φ one may obtain a counter-model and from that counter-model an

Chapter VII. Proofs and Explanations 82

explanation for the failed entailment. Model-checking based reasoning

can be used in such situation;

3. If M 6|= φ, but Spec(M) ` φ, why does this false proposition holds? In

this case, one must provide a proof of φ.

Here we are interested in the last case, tests providing a false positive

answer, that is, the prover shows a deduction/proof for an assertion that must

be invalid in the theory considered. This is one of the main reasons to explain

a theorem when validating a theory. We need to provide explanation on why

a false positive is entailed. Another reason to provide explanations of theorem

has to do with providing explanation on why some assertion is a true positive,

which is the first case. This latter use is concerned with certification; in this

case the proof/deduction itself serves as a certification document. This section

does not take into account educational uses of theorem provers, and their

resulting theorems, since explanations in these cases are more demanding.

For the tasks of providing proofs and explanations, we compare three

deduction systems, Analytic Tableaux (AT) [64], Sequent Calculus (SC) [66]

and Natural Deduction (ND) [49] as presented in the respective references.

In this section we consider the propositional logic (Minimal, Intuitionistic and

Classical, as defined in [49]). Let us consider a theory (presented by a knowledge

base KB) containing the single axiom

KB ≡ (Quad ∧ PissOnFireHydrant)→ Dog

which classifies a dog as a quadruped which pisses on a fire hydrant. This KB
draws the following proposition

(Quad→ Dog) ∨ (PissOnFireHydrant→ Dog)

Figure VII.1 presents three from many more possible proofs of this

entailment in Propositional Tableaux system. Figure VII.2 presents three

possible proofs in Sequent Calculus, they are also sorted out from many others

possible proofs in Sequent Calculus. Figure VII.3 present the only two possible

normal proofs for this entailment.

Consider the derivations from Figure VII.1 and VII.2. They all corres-

pond to the Natural Deduction derivations that is showed in Figure VII.3.

The Tableaux and Sequent Calculus variants only differ in the order of rule

applications. In ND there is no such distinction. In this example, the order

of application is irrelevant in terms of explanation, although it is not for the

prover’s implementation. The pattern represented by the ND deduction is

Chapter VII. Proofs and Explanations 83

V Quad ∧ PoFH → Dog

F (Quad→ Dog) ∨ (PoFH → Dog)

F (Quad→ Dog)

FPoFH → Dog

V Quad

FDog

V PoFH

FDog

FQuad ∧ PoFH

FQuad FPoFH

V Dog

V Quad ∧ PoFH → Dog

F (Quad→ Dog) ∨ (PoFH → Dog)

F (Quad→ Dog)

FPoFH → Dog

FQuad ∧ PoFH

FQuad

V Quad

FDog

FPoFH

V Quad

FDog

V PoFH

FDog

V Dog

V Quad

FDog

V Quad ∧ PoFH → Dog

FQuad ∧ PoFH

F (Quad→ Dog) ∨ (PoFH → Dog)

F (Quad→ Dog)

FPoFH → Dog

V Quad

FDog

V PoFH

FDog

FQuad FPoFH

V Dog

F (Quad→ Dog) ∨ (PoFH → Dog)

F (Quad→ Dog)

FPoFH → Dog

V Quad

FDog

Figure VII.1: Tableaux proofs

Chapter VII. Proofs and Explanations 84

KB ⇒ PoFH ∧Quad→ Dog

Quad⇒ Quad

Quad, PoFH ⇒ Quad

PoFH ⇒ PoFH

Quad, PoFH ⇒ PoFH

Quad, PoFH ⇒ Quad ∧ PoFH Dog ⇒ Dog

Quad, PoFH, PoFH ∧Quad→ Dog ⇒ Dog

Quad, PoFH, PoFH ∧Quad→ Dog ⇒ Dog,Dog

PoFH, PoFH ∧Quad→ Dog ⇒ (Quad→ Dog), Dog

PoFH,KB ⇒ (Quad→ Dog), Dog

KB ⇒ (Quad→ Dog), (PoFH → Dog)

KB ⇒ (Quad→ Dog) ∨ (PoFH → Dog)

KB ⇒ PoFH ∧Quad→ Dog

Quad⇒ Quad

Quad, PoFH ⇒ Quad

PoFH ⇒ PoFH

Quad, PoFH ⇒ PoFH

Quad, PoFH ⇒ Quad ∧ PoFH Dog ⇒ Dog

Quad, PoFH, PoFH ∧Quad→ Dog ⇒ Dog

KB, Quad, PoFH ⇒ Dog

KB, Quad, PoFH ⇒ Dog,Dog

KB, PoFH ⇒ (Quad→ Dog), Dog

KB ⇒ (Quad→ Dog), (PoFH → Dog)

KB ⇒ (Quad→ Dog) ∨ (PoFH → Dog)

KB ⇒ PoFH ∧Quad→ Dog

Quad⇒ Quad

Quad, PoFH ⇒ Quad

PoFH ⇒ PoFH

Quad, PoFH ⇒ PoFH

Quad, PoFH ⇒ Quad ∧ PoFH

Dog ⇒ Dog

Dog ⇒ Dog,Dog

Quad, PoFH, PoFH ∧Quad→ Dog ⇒ Dog,Dog

KB, Quad, PoFH ⇒ Dog,Dog

KB, PoFH ⇒ (Quad→ Dog), Dog

KB, PoFH ⇒ (Quad→ Dog), Dog

KB ⇒ (Quad→ Dog), (PoFH → Dog)

KB ⇒ (Quad→ Dog) ∨ (PoFH → Dog)

Figure VII.2: Sequent Calculus proofs

close to what one expects from an argument drawing a conclusion from any

conjunction that it contains. This example shows how SC proofs carry more

information than that needed for a meaningful explanation. Concerning the

AT system, Smullyan [64] noted that AT proofs correspond to SC proofs by

considering sequents formed by positively signed formulas (Tα) at the ante-

cedent and negatively signed ones (Fα) appearing at the succedent. A Block

AT is defined then by considering AT expansion rules in the form of inference

rules. In this way, our example in SC would carry the same content useful for

explanation carried by the AT proofs. We must note that different SC proofs

and its corresponding AT proofs, as the ones shown, are represented, all of

them, by only two possible variations of normal derivations in ND.

Sequent Calculus seems to be the oldest among the three systems here

considered. Gentzen decided to move from ND to SC in order to detour from

technical problems faced by him in his syntactical proof of the consistency of

Arithmetic in 1936. As mentioned by Prawitz [49], SC can be understood as

a meta-calculus for the deducibility relation in ND. A consequence of this is

that ND can represent in only one deduction of α from γ1, . . . , γn many SC

proofs of the sequent γ1, . . . , γn ⇒ α. Gentzen made SC formally state rules

that were implicit in ND, such as the structural rules. We advice the reader

that the SC used here (see [66]) is a variation of Gentzen’s calculus designed

with the goal of having, in each inference rule, any formula occurring in a

Chapter VII. Proofs and Explanations 85

[Quad]d

[Quad]a [PoFH]b

Quad ∧ PoFH Quad ∧ PoFH → Dog

Dog
b

PoFH → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥a ¬Quad

⊥
Dog

d
Quad → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥c
(Quad → Dog) ∨ (PoFH → Dog)

[Quad]a [PoFH]b

Quad ∧ PoFH Quad ∧ PoFH → Dog

Dog
b

PoFH → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥
Dog

a
Quad → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥c
(Quad → Dog) ∨ (PoFH → Dog)

Figure VII.3: Natural Deduction proofs

premise as a sub-formula of some formula occurring in the conclusion. This

sub-formula property facilitates the implementation of a prover based on this

very system.

Consider a normal ND deduction Π1 of α from γ1, . . . , γk, and, a

deduction Π2 of γi (for some i = 1, k) from δ1, . . . , δn. Using latter Π1 in

the former Π2 deduction yields a (possibly non-normal) deduction of α from

γ1, δ1, . . . , γk, δn. This can be done in SC by applying a cut rule between

the proofs of the corresponding sequents δ1, . . . , δn ⇒ γi and γ1, . . . , γk ⇒ α

yielding a proof of the sequent γ1, δ1, . . . , γk, δn ⇒ α. The new ND deduction

can be normalized, in the former case, and the cut introduced in the latter case

can be eliminated. In the case of AT, the fact that they are closed by modus

ponens implies that closed AT for δ → γ and γ → α entails the existence of a

closed AT for δ → α. The use of cuts, or equivalently, lemmas may reduce the

size of a derivation. However, the relevant information conveyed by a deduction

or proof in any of these systems has to firstly consider normal deductions, cut-

free proofs and analytic Tableaux. They are the most representative formal

objects in each of these systems as a consequence of the sub-formula property,

holding in ND too. Besides that they are computationally easier to build than

their non-normal counterparts.

These examples are carried out in Minimal Logic. For Classical reasoning,

an inherent feature of most DLs, including ALC, the above scenario changes.

Chapter VII. Proofs and Explanations 86

Any classical proof of the sequent γ1, γ2 ⇒ α1, α2 corresponds a ND deduction

of α1 ∨ α2 from γ1, γ2, or, of α1 from γ1, γ2,¬α2, or, of α2 from γ1, γ2,¬α1,

or, of ¬γ1 from ¬α1, γ2,¬α2, and so on. In Classical logic 1, each SC may

represent more than one deduction, since we have to choose which formula

will be the conclusion in the ND side. We recall that it still holds that to

each ND deduction there is more than one SC proof. In order to serve as a

good basis for explanations of classical theorems we choose ND as the most

adequate. Note that we are not advocating that the prover has to produce ND

proofs directly. An effective translation to a ND might be provided. Of course

there must be a ND for the logic involved. If, besides that, a normalization is

provided for a system, we know that it is possible to always deal with canonical

proofs satisfying the sub-formula principle.

VII.2 An example of Explanations from Proofs

in SCALC
Let us briefly introduce the idea of providing explanations of proofs in

SCALC. Consider the proof:

Doctor ⇒ Doctor
weak-r

Doctor ⇒ Rich,Doctor t-r
Doctor ⇒ (Rich tDoctor)

prom-∀
∀childDoctor ⇒ ∀child(Rich tDoctor)

weak-l
>, ∀childDoctor ⇒ ∀child(Rich tDoctor) ¬-r
> ⇒ ∃child¬Doctor, ∀child(Rich tDoctor)

weak-r
> ⇒ ∃child¬Doctor, ∃childLawyer, ∀child(Rich tDoctor)

∃-r
> ⇒ ∃child¬Doctor, ∃child.Lawyer, ∀child(Rich tDoctor)

∃-r
> ⇒ ∃child.¬Doctor, ∃child.Lawyer, ∀child(Rich tDoctor)

t-r
> ⇒ (∃child.¬Doctor) t (∃child.Lawyer), ∀child(Rich tDoctor)

prom-∃
∃child> ⇒ ∃child((∃child.¬Doctor) t (∃child.Lawyer)), ∃child,∀child(Rich tDoctor)

¬-l∃child>, ∀child¬((∃child.¬Doctor) t (∃child.Lawyer))⇒ ∃child,∀child(Rich tDoctor)
∀-r∃child>, ∀child¬((∃child.¬Doctor) t (∃child.Lawyer))⇒ ∃child∀child.(Rich tDoctor)
∀-l∃child>, ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer))⇒ ∃child∀child.(Rich tDoctor)
∃-r∃child>,∀child.¬((∃child.¬Doctor) t (∃child.Lawyer))⇒ ∃child.∀child.(Rich tDoctor)
∃-l∃child.>, ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer))⇒ ∃child.∀child.(Rich tDoctor)
u-l∃child.> u ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer))⇒ ∃child.∀child.(Rich tDoctor)

This proof tree could be explained by the following text:

(1) Doctors are Doctors or Rich (2) So, Everyone having all children

Doctors has all children Doctors or Rich. (3) Hence, everyone either

has at least a child that is not a doctor or every children is a

doctor or rich. (4) Moreover, everyone is of the kind above , or,

1Intuitionistic Logic and Minimal Logic have similar behavior concerning the relationship
between their respective systems of ND and SC.

Chapter VII. Proofs and Explanations 87

alternatively, have at least one child that is a lawyer. (5) In other

words, if everyone has at least one child, then it has one child that

has at least one child that is a lawyer, or at least one child that is

not a doctor, or have all children doctors or rich. (6) Thus, whoever

has all children not having at least one child not a doctor or at least

one child lawyer has at least one child having every children doctors

or rich.

The above explanation was build from top to bottom (toward the

conclusion of the proof), by a procedure that tries not to repeat conjunctive

particles (if - then, thus, hence, henceforth , moreover etc) to put together

phrases derived from each subproof. In this case, phrase (1) come from weak-

r, t-r; phrase (2) come from prom-2; (3) is associated to weak-l, neg-r; (4)

corresponds to weak-r, the two following ∃-r and the u; (5) is associated to

prom-1 and finally (6) corresponds to the remaining of the proof. The reader

can note the large possibility of using endophoras in the construction of texts

from structured proofs as the ones obtained by either SCALC or SC[]ALC.

In Section VII.3 an example illustrating the use of theoremhood to

explain reasoning on UML models is accomplished by proofs in ND, SC and

AT.

VII.3 Explaining UML in NDALCQI
In [4], DLs are used to formalize UML diagrams. It uses two DL lan-

guages: DLRifd orALCQI. The diagram on Figure VII.4 and its formalization

on Figure VII.5, are from [4].D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 81

Fig. 12. UML class diagram of Example 2.5.

2.4. General constraints

Disjointness and covering constraints are in practice the most commonly used con-
straints in UML class diagrams. However, UML allows for other forms of constraints,
specifying class identifiers, functional dependencies for associations, and, more generally
through the use of OCL [8], any form of constraint expressible in FOL. Note that, due
to their expressive power, OCL constraints could in fact be used to express the semantics
of the standard UML class diagram constructs. This is an indication that a liberal use of
OCL constraints can actually compromise the understandability of the diagram. Hence,
the use of constraints is typically limited. Also, unrestricted use of OCL constraints makes
reasoning on a class diagram undecidable, since it amounts to full FOL reasoning. In the
following, we will not consider general constraints.
We conclude the section with an example of a full UML class diagram.

Example 2.5. Fig. 12 shows a complete UML class diagram that models phone calls origi-
nating from different kinds of phones, and phone bills they belong to.13 The diagram shows
that a MobileCall is a particular kind of PhoneCall and that the Origin of each PhoneCall
is one and only one Phone. Additionally, a Phone can be only of two different kinds: a
FixedPhone or a CellPhone. Mobile calls originate (through the association MobileOrigin)
from cell phones. The association MobileOrigin is contained in the binary association Ori-
gin: hence MobileOrigin inherits the attribute place of association class Origin. Finally, a
PhoneCall is referenced in one and only one PhoneBill, whereas a PhoneBill contains at
least one PhoneCall. In FOL, the diagram is represented as shown in Fig. 13.
Notice that, in the above diagram, one would like to express that each MobileCall is

related via the association Origin only to instances of CellPhone. Similarly for the other
direction of the association. This can be expressed in FOL as follows:

∀y1, y2, x. MobileCall(y1) ∧Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ CellPhone(y2)

∀y1, y2, x. CellPhone(y2) ∧Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃MobileCall(y1)

The association MobileOrigin approximates this, making it explicit in the diagram that Mo-
bileCalls and CellPhones are related to each other.

13 This diagram is based on an example provided with I.COM, a prototype design tool for conceptual modeling
with reasoning support [17].

Figure VII.4: UML class diagram

We use examples of DL deductions from [4, page 84], using NDALCQI to

reason on the ALCQI KB. The idea is to exemplify how one can obtain from

NDALCQI proofs, a more precise and direct explanation.

The first example concerns a refinement of a multiplicity. That is,

from reasoning on the diagram, one can deduce that the class MobileCall

Chapter VII. Proofs and Explanations 88

Origin v ∀place.String

Origin v ∃place.> u (≤ 1 place)

Origin v ∃call.PhoneCall u (≤ 1 call) u ∃from.Phone u (≤ 1 from)

MobileOrigin v ∃call.MobileCall u (≤ 1call) u ∃from.CellPhone u (≤ 1 from)

PhoneCall v (≥ 1 call−.Origin) u (≤ 1 call−.Origin)

> v ∀reference−.PhoneBill u ∀reference.PhoneCall

PhoneBill v (≥ 1 reference−)

PhoneCall v (≥ 1 reference) u (≤ 1 reference)

MobileCall v PhoneCall

MobileOrigin v Origin

CellPhone v Phone

FixedPhone v Phone

CellPhone v ¬FixedPhone

Phone v CellPhone t FixedPhone

Figure VII.5: The ALCQI theory obtained from the UML diagram on Fig-
ure VII.4

participates on the association MobileOrigin with multiplicity 0 . . . 1, instead

of the 0 . . . ∗ presented in the diagram. The proof on NDALCQI is as follows,

where we abbreviate the class names for their first letters, for instance, Origin

(O), MobileCall (MC), call (c) and so on. Note that ¬ ≥ 2c−.MO is actually

an abbreviation for ≤ 1c−.MO.

[≥ 2 c−.MO]2
MO v O

≥ 2 c−.MO v ≥ 2 c−.O

≥ 2 c−.O

[MC]1 MC v PC

PC PC v ≥ 1 c−.O u ≤ 1 c−.O

≥ 1 c−.O u ≤ 1 c−.O

≤ 1 c−.O

⊥
2¬ ≥ 2 c−.MO

1
MC v ¬ ≥ 2 c−.MO

To exemplify deductions on diagrams, an incorrect generalization

between two classes was introduced. The generalization asserts that each

CellPhone is a FixedPhone, which means the introduction of the new ax-

iom CellPhone v FixedPhone in the KB. From that improper generalization,

several undesirable properties could be drawn.

Chapter VII. Proofs and Explanations 89

The first conclusion about the modified diagram is that Cellphone is

now inconsistent. The NDALCQI proof below explicits that from the newly

introduced axiom and from the axiom CellPhone v ¬FixedPhone in the KB,

one can conclude that CellPhone is now inconsistent.

Cell v ¬Fixed [Cell]1

¬Fixed
Cell v Fixed [Cell]1

Fixed
⊥

1
Cell v ⊥

The second conclusion is that in the modified diagram, Phone ≡
FixedPhone. Note that we have only to show that Phone v FixedPhone since

FixedPhone v Phone is an axiom already in the original KB. We can conclude

from the proof below that Phone v FixedPhone is not a direct consequence

of CellPhone being inconsistent, as stated in [4], but mainly as a direct con-

sequence of the newly introduced axiom and a case analysis over the possible

subtypes of Phone.

[Phone]1 Phone v Cell t Fixed
Cell t Fixed

[Cell] Cell v Fixed

Fixed [Fixed]
Fixed

1
Phone v Fixed

Below it is shown the above discussed subsumption proved in SC

(Sequent Calculus).

MO⇒ O

≥ 2 call−.MO⇒ ≥ 2 call−.O
MC,≥ 2 call−.MO⇒ ≥ 2 call−.O

MC⇒ PC PC⇒ ≥ 1 call−.O u ≤ 1 call−.O
MC⇒ ≥ 1 call−.O u ≤ 1 call−.O

MC,≥ 2 call−.MO⇒ ≥ 1 call−.O u ≤ 1call−.O
MC,≥ 2 call−.MO⇒ ≥ 1 call−.O u ≤ 1call−.O u ≥ 2call−.O
MC,≥ 2 call−.MO⇒ ⊥

MC⇒ ¬ ≥ 2 call−.MO

In order to the reader concretely see that it is harder explaining on

Tableaux basis than on Natural Deduction basis, we prove the same MC v
¬ ≥ 2 call−.MO subsumption in Tableaux. We follow [1, Section 2.3.2.1]

and represent the Tableaux constraints as ABox assertions without unique

name assumption. 2 The constraint“a belongs to (the interpretation of) C”

is represented by C(a) and “b is an R-filler of a” by R(a, b). A complete

presentation of the Tableaux procedure for ALCQI can be found at [1].

The Tableaux procedure starts translating the subsumption problem

to a satisfiability problem. The subsumption C v D holds iff C u ¬D is

unsatisfiable. In our case, C0 ≡ MC u ≥ 2 call−.MO should be unsatisfiable.

2Instead, we allow explicit inequality assertions of the form x 6= y. Those assertions are
assumed symmetric.

Chapter VII. Proofs and Explanations 90

Since C0 is already in the NNF (negation normal form), we are ready to the

Tableaux algorithm, otherwise we would have to first transform it to obtain a

NNF equivalent concept description. Tableaux procedure starts with the ABox

A0 = {C0(x0)} and applies consistency-preserving transformation rules to the

ABox until no more rules apply. If the completed expanded ABox obtained

does not contain clashes (contradictory assertions), then A0 is consistent and

thus C0 is satisfiable, and incosistent (unsatisfiable) otherwise.

A0 is the initial ABox. By u-rule, we get A1. Than, by ≥-rule we get A2.

A3 is obtained by using the theory axioms MO v O and MC v PC. The ABoxA4 is

obtained by using the theory axiom PC v≥ 1 call−.O u ≤ 1 call−.O. Next, A5

by u-rule. ABox A5 now contains a contradiction, the individual a is required

to have at most one successor of type O in the role call−. Nevertheless, b and

c are also required to be of type O and successors of a in role call−, vide A3

and A2. This shows that C0 is unsatisfiable, and thus MC v ¬ ≥ 2 call−.MO.

{(MC u ≥ 2 call−.MO)(a)} (A0)

A0 ∪ {MC(a), (≥ 2 call−.MO)(a)} (A1)

A1 ∪ {call−(a, b), call−(a, c), MO(b), MO(c), a 6= b, b 6= c, a 6= c} (A2)

A2 ∪ {O(b), O(c), PC(a)} (A3)

A3 ∪ {(≥ 1 call−.Ou ≤ 1 call−.O)(a)} (A4)

A4 ∪ {(≥ 1 call−.O)(a), (≤ 1 call−.O)(a)} (A5)

VIII
A Prototype Theorem Prover

Reasoning is the ability to make inferences, and automated reas-

oning is concerned with the building of computing systems that

automate this process. Stanford Encyclopedia of Philosophy

In this chapter we present a prototype implementation of the systems

SCALC and SCALCQ. We choose to implement the Sequent Calculi because

they represent a first step towards a ND implementations.

The prototype theorem prover was implemented in Maude [18]. So in Sec-

tion VIII.1 we present the Maude System and language and in Section VIII.2

we describe the prototype implementation.

VIII.1 Overview of the Maude System

This section presents a general overview of the main characteristics

of the Maude system and language. A complete description of Maude can

be found at [18]. We will only present the aspects of Maude used in our

implementation. Moreover, we will not present the theory foundations of

Maude in the “Rewriting logic” [47] since our implementation uses the Maude

system as an interpreter for the Maude language. We did not explored any

possible mapping between description logics and rewriting logic.

Maude’s basic programming statements are very simple and easy to

understand. They are equations and rules, and have in both cases a simple

rewriting semantics in which instances of the lefthand side pattern are replaced

by corresponding instances of the righthand side.

Maude programs are organized in modules. Maude modules containing

only equations are called functional modules. Modules containing rules are

called system module. In both cases, besides equations and rules, modules

may contain declarations of sorts (types), operators and variables.

A functional module defines one or more functions by means of equations.

Equations are used as simplification rules. Replacement of equals by equals

is performed only from left to right as simplification rewriting. A function

specification should have a final result and should be unique. Finally, Maude

Chapter VIII. A Prototype Theorem Prover 92

equations can be conditional, that is, they are only applied if a certain condition

holds.

A Maude module containing rules and possibly equations is called a

system module. Rules are also computed by rewriting from left to right, but

they are not equations. Instead, they are understood as local transition between

states in a possibly concurrent system. For instance, a distributed banking

system can be represented as account objects and messages floating in a

“soup”. That is, in a multi-set or bag of objects and messages. Such objects and

messages in the soup can interact locally with each other according to specific

rewrite rules. The systems specified by rules can be highly concurrent and

nondeterministic. Unlike for equations, there is no assumption that all rewrite

sequences will lead to the same outcome. Furthermore, for some systems there

may not be any final states: their whole point may be to continuously engage

in interactions with their environment as reactive systems. Note that, since

the Maude interpreter is sequential, the concurrent behavior is simulated

by corresponding interleavings of sequential rewriting steps. Logically, when

rewriting logic was used as a logical framework to represent other logics a

rule specifies a logical inference rule, and rewriting steps therefore represent

inference steps.

Maude has two varieties of types: sorts, which correspond to well-defined

data, and kinds, which may contain error elements. Sorts can be structured

in subsort hierarchies, with the subsort relation understood semantically as

subset inclusion. This allows support for partial functions, in the sense that a

function whose application to some arguments has a kind but not a sort should

be considered undefined for those arguments. Furthermore, operators can be

subsort-overloaded, providing a useful form of subtype polymorphism.

In Maude the user can specify operators. An operator has arguments

(each one has a sort) and a result sort. Each operator has its own syntax,

which can be prefix, postfix, infix, or a “mixfix” combination. This is done

by indicating with underscores the places where the arguments appear in the

mixfix syntax. The combination of user-definable syntax with equations and

equational attributes for matching leads to a very expressive capability for

specifying any user-definable data. This is one of the main reasons that makes

Maude a perfect language/system for prototyping.

Rewriting with both equations and rules takes place by matching a

lefthand side term against the subject term to be rewritten. The most simpler

matching is syntactic matching, in which the lefthand side term is matched as

a tree on the (tree representation of the) subject term. Nevertheless, Maude

allows also more expressive matching like “equational matching”. when we

Chapter VIII. A Prototype Theorem Prover 93

define operators in Maude we can use attributes like assoc (associative) and

comm (commutative) called equational attributes. For instance, if an operator

is defined with both of these attributed, terms having this operator as the

principal operator (the most external one), are not matching of trees, but as

multi-set, that is, modulo associativity and commutativity. In general, a binary

operator declared in a Maude can be defined with any combination of the

equational attributes: associativity, commutativity, left-, right-, or two-sided

identity, and idempotency.

A Maude system module implements a rewrite theory that must be

admissible, which means that rules should be coherent relative to the equations

[18]. If a rewrite theory contains both rules and equations, rewriting is

performed modulo such equations. Maude strategy to rewriting terms is to

first apply the equations to reach a canonical form, and then do a rewriting

step with a rule (in a rule-fair manner). This strategy is complete if we assume

coherence. Coherence means that we will not miss possible rewrites with rules

that could have been performed if we had not insisted on first simplifying the

term to its canonical form with the equations. Maude implicitly assumes this

coherence property.

VIII.2 A Prototype Theorem Prover

In this section we present our Maude implementation of SCALC and

SC[]ALC sequent calculi. We will omit trivial details of the implementation

and focus on the important parts. Moreover, it is important to note that this

prototype is available for download at http://github.com/arademaker/SALC

and also includes the implementation of SCALCQI system an its counterpart

SC[]ALCQI . Those implementations are not described here since they do not

differ considerably from the presented.

(a) The Logical Language

Due to the flexibility to specify user-definable data in Maude, the

definition of the description logics ALC and ALCQI syntax was effortless.

The language ALC is defined in the function module SYNTAX below. We

have defined sorts for atomic concepts and atomic roles besides the sort for

concepts and roles in general. The constants > and ⊥ were also specified.

fmod SYNTAX is

inc NAT .

sorts AConcept Concept ARole Role .

http://github.com/arademaker/SALC

Chapter VIII. A Prototype Theorem Prover 94

subsort AConcept < Concept .

subsort ARole < Role .

ops ALL EXIST : Role Concept -> Concept .

ops CTRUE CFALSE : -> AConcept .

op _&_ : Concept Concept -> Concept [ctor gather (e E) prec 31] .

op _|_ : Concept Concept -> Concept [ctor gather (e E) prec 32] .

op ~_ : Concept -> Concept [ctor prec 30] .

eq ~ CTRUE = CFALSE .

eq ~ CFALSE = CTRUE .

endfm

The syntax for defining operators is:

op NAME : Sort-1 Sort-2 ... -> Sort [attr-1 ...] .

where NAME may contain underscores to identify arguments position in infix

notation. The list of sorts before -> is the arguments and the sort after is the

sort of the resultant term.

Since our SCALC and SCALCQI systems reason over labeled concepts.

The next step was to extend the language with labels and some functions over

them. A labeled concept ∀R,∃Sα is represented by the term < al(R) ex(S) |

A > where A is a constant of the sort AConcept and R and S constants of the

sort ARole. In the modules below, we show the declarations of all operators

but omitted the specification of logical operators has-quant, has-lt and so

on.

fmod LABEL is

inc SYNTAX .

sorts Label ELabel ALabel QLabel .

subsorts ELabel ALabel QLabel < Label .

ops gt lt : Nat Role -> QLabel .

op ex : Role -> ELabel .

op al : Role -> ALabel .

endfm

The definition below of the operators neg and neg-aux should be clear

but being the first equational specification deserves an explanation. The

Chapter VIII. A Prototype Theorem Prover 95

operator neg(L) operates over the list of labels L inverting all its quantifiers. In

Section III.1, we represent such operation as ¬L. We use neg-aux to interact

over the list accumulating the result in its second argument until the first

argument is completely consumed and the second argument returned.

fmod LALC-SYNTAX is

inc LABEL .

inc LIST{Label} .

vars L1 L2 : List{Label} .

vars R : Role .

var C : Concept .

sorts Expression LConcept .

subsort LConcept < Expression .

op <_|_> : List{Label} Concept -> LConcept [ctor] .

ops has-quant has-lt has-gt : List{Label} -> Bool .

ops has-al has-ex : List{Label} -> Bool .

op neg : List{Label} -> List{Label} .

op neg-aux : List{Label} List{Label} -> List{Label} .

...

eq neg(L1) = neg-aux(L1, nil) .

eq neg-aux(L1 al(R), L2) = neg-aux(L1, ex(R) L2) .

eq neg-aux(L1 ex(R), L2) = neg-aux(L1, al(R) L2) .

eq neg-aux(nil, L2) = L2 .

endfm

It is worth to note that this is not the only way to define neg in Maude,

the auxiliary function is not necessary at all, but we will use them frequently

in our implementation.

Finally, the module LALC-SYNTAX declares the sorts Expression and

LConcept (labeled concept). Expressions are labeled concepts but the distinc-

tion can be useful for future extensions of the calculi.

(b) The Sequent Calculus

In the function module SEQUENT-CALCULUS we implemented the generic

data structures that are used by all sequent calculi. The idea is that a proof

Chapter VIII. A Prototype Theorem Prover 96

will be represented as a multi-set (“soup”) of goals and messages (operators

with sort State). Goals are sequents with additional properties to keep the

proof structure. Each goal will have an identifier (natural number), the goal

origin, the name of the rule used to produce that goal, and the sequent. In this

way, our proof is a graph represented as a multi-set of terms with sort Proof.

The goals operator holds a list of natural numbers as its argument, the list of

pending goals. The next operator is just an auxiliary operator that provides

in each proof step the next goal identifier.

fmod SEQUENT-CALCULUS is

inc LALC-SYNTAX .

inc SET{Expression} .

inc SET{Label} .

...

sorts Sequent Goal State Proof .

subsort Goal State < Proof .

op next : Nat -> State .

op goals : Set{Nat} -> State .

op [_from_by_is_] : Nat Nat Qid Sequent -> Goal [ctor] .

op nil : -> Proof [ctor] .

op __ : Proof Proof -> Proof [ctor comm assoc] .

op _|-_ : Set{Expression} Set{Expression} ->

Sequent [ctor prec 122 gather(e e)] .

op _:_|-_:_ : Set{Expression} Set{Expression} Set{Expression}

Set{Expression} -> Sequent [ctor prec 122 gather(e e e e)] .

...

endfm

We must also note that we have defined two operators 1 to construct

sequents. The operator |- is the simplest sequent with two multi-set of

expression, one on the left (sequent antecedent, possibly empty) and other on

the right (sequent succedent, possibly empty), it is used to implement SCALC.

The operator : |- : is used by the frozen versions of SCALC and SCALCQI .

The two additional external sets of expressions hold the frozen formulas.

1Term constructor in Maude terminology since these operators will never be reduced,
they are used to hold data.

Chapter VIII. A Prototype Theorem Prover 97

Consider the proof of the sequent ∀R.(AuB)⇒ ∀R.Au∀R.B presented

in Figure VIII.1. One proof constructed by our system is represented by the

term below. The goal 0 is the initial state of the proof, goals 6 and 5 are the

initial sequents. Goal 1 is obtained from goal 0 applying the rule ∀-l. The empty

argument of goals(empty) represent the fact that this proof is complete, there

is no remaining goals to be proved.

goals(empty) next(7)

[0 from 0 by ’init is < nil | ALL(R, A & B) > |-

< nil | ALL(R, A) & ALL(R, B) >]

[1 from 0 by ’forall-l is < al(R) | A & B > |-

< nil | ALL(R, A) & ALL(R, B) >]

[2 from 1 by ’and-l is < al(R) | A >, < al(R) | B > |-

< nil | ALL(R, A) & ALL(R, B) >]

[3 from 2 by ’and-r is < al(R) | A >, < al(R) | B > |- < nil | ALL(R, A) >]

[4 from 2 by ’and-r is < al(R) | A >, < al(R) | B > |- < nil | ALL(R, B) >]

[5 from 3 by ’forall-r is < al(R) | A >, < al(R) | B > |- < al(R) | A >]

[6 from 4 by ’forall-r is < al(R) | A >, < al(R) | B > |- < al(R) | B >]

Figure VIII.1: An example of a proof in the implementation of SCALC

VIII.3 The SCALC System

The SCALC system was implemented in a system module. Basically, each

rule of the system is a Maude rewriting rule. The rewriting procedure construct

the proof bottom-up.

mod SYSTEM is

inc SEQUENT-CALCULUS .

[rules and equations presented below]

endm

The first observation regards the structural rules of SCALC. Since the left

and right sides of the sequents are sets of formulas, we do not need permutation

of contraction rules. We also proved in Section III.4 that the cut rule was not

necessary too. Nevertheless, we could lose completeness if we have omitted

the weak rules. We need them to allow the promotional rules applications.

Moreover, the initial sequent were implemented as an equation rather than as a

Chapter VIII. A Prototype Theorem Prover 98

rule. We used the fact that in Maude all rewriting steps with rules are executed

module equational reductions. The implementation of the initial sequents using

equations means that a goal detected as initial will be removed from the goals

lists right aways.

eq [X from Y by Q is ALFA, E |- E, GAMMA] goals((X, XS)) =

[X from Y by Q is ALFA, E |- E, GAMMA] goals((XS))

[label initial] .

rl [weak-l] :

[X from Y by Q is ALFA, E |- GAMMA] next(N) goals((X, XS))

=>

[X from Y by Q is ALFA, E |- GAMMA] next(N + 1) goals((XS, N))

[N from X by ’weak-l is ALFA |- GAMMA] .

First we note the difference between rules and equations. They are very

similar expected that the former uses => and the later = as a term separator.

rl [label] : term-1 => term-2 [attr-1,...] .

eq term-1 = term-2 [attr-1,...] .

We note that on each rule the goal being rewritten must be repeated in

the left and right side of the rule. See weak rule above. If we omit the goal on

the right side of the rule we would be removing the goal from the proof. We

are actually including new goals on each step, that is, we put new goals in the

“soup” of goals.

Reading bottom-up, some rules create more than one (sub)-goal from

a goal. This is the case of rule u-r below. Besides that, whenever a rule has

some additional proviso, we use Maude conditional rules to express the rule

proviso in the rule condition. In the rule u-r, the proviso states that in the

list of labels of the principal formula all labels must be universal quantified, in

SCALC, this is the same of saying that L cannot contain existential quantified

labels (has-ex(L)).

crl [and-r] :

[X from Y by Q is ALFA |- GAMMA, < L | A & B >]

next(N) goals((X, XS))

=>

next(N + 2) goals((XS, N, N + 1))

[X from Y by Q is ALFA |- GAMMA, < L | A & B >]

[N from X by ’and-r is ALFA |- GAMMA, < L | A >]

Chapter VIII. A Prototype Theorem Prover 99

[N + 1 from X by ’and-r is ALFA |- GAMMA, < L | B >]

if not has-ex(L) .

The rule condition can consist of a single statement or can be a conjunc-

tion formed with the associative connective /\. Rule promotional-∃ has two

conditions. The first, from left to right, is the rule proviso (all concepts on the

left-side of the sequent must have the same most external label), the second

is actually just an instantiation of the variable GAMMA’ with the auxiliary op-

erator remove-label. GAMMA’ will be the right-side of the new sequent (goal)

created. remove-label iterate over the concepts removing the most external

label of them.

crl [prom-exist] :

[X from Y by Q is < ex(R) L | A > |- GAMMA]

next(N) goals((X, XS))

=>

next(N + 1) goals((XS, N))

[X from Y by Q is < ex(R) L | A > |- GAMMA]

[N from X by ’prom-exist is < L | A > |- GAMMA’]

if all-label(GAMMA, ex(R)) = true

/\ GAMMA’ := remove-label(GAMMA, ex(R), empty) .

The implementation of the remain rules is straightforward. We have one

observation more about the rules above, the argument of next(N) gives the

next goal identifier. The argument of goals holds the list of goals not solved.

A derivation with goals(empty) in the “soup” is a completed proof of the

sequent in the goal with identifier 0.

(a) The SC[]
ALC System Implementation

The system SC[]ALC is implemented in a very similar way of SCALC. The

main differences are that sequents now have frozen concepts and two additional

rules had to be implemented. Concepts that were frozen together will never be

unfrozen separated, so that, instead of defining an operator to freeze a concept,

we defined a constructor of a set of frozen concepts.

mod SYSTEM is

inc SEQUENT-CALCULUS .

...

op [_,_,_] : Nat Nat Set{Expression} -> Expression .

Chapter VIII. A Prototype Theorem Prover 100

The constructor of frozen set of concepts has three arguments. The first

argument is the context identifier (see Section IV.2) created to group the pair

of sets of concepts frozen together on the sequent antecedent and succedent.

The second argument is the state of the context where 0 means that the context

is saved but not reduced yet (context was frozen by weak rule), and 1 means

that the context was reduced (context was frozen by frozen-exchange rule).

The last argument is the set of frozen concepts.

Almost all rules of SC[]ALC do not touch in the frozen concepts. This is

the case of negation rule below. We note the use of the operator neg inverting

the list of labels of a concept.

rl [neg-l] :

[X from Y by Q is FALFA : ALFA, < L | ~ A > |- GAMMA : FGAMMA]

next(N) goals((X, XS))

=>

next(N + 1) goals((XS, N))

[X from Y by Q is FALFA : ALFA, < L | ~ A > |- GAMMA : FGAMMA]

[N from X by ’neg-l is FALFA : ALFA |- GAMMA, < neg(L) | A > : FGAMMA] .

The weak-r rule was implemented as a conditional rewrite rule below.

The left and right-side of the sequent in goal X were frozen and added to the

set of frozen concepts on the left and right side of the sequent in the new goal

N. The variables FALFA and FGAMMA match the set of frozen concepts on both

sides. The weak-l rule is similar.

crl [weak-r] :

[X from Y by Q is FALFA : ALFA |- GAMMA, E : FGAMMA]

next(N) goals((X, XS))

=>

next(N + 1) goals((XS, N))

[X from Y by Q is FALFA : ALFA |- GAMMA, E : FGAMMA]

[N from X by ’weak-l is (FALFA, [M:Nat, 0, ALFA]) : ALFA |-

GAMMA : (FGAMMA, [M:Nat, 0, (GAMMA, E)])]

if M:Nat := next-frozen(union(FALFA, FGAMMA)) .

The other SC[]ALC rule that modify the set of frozen concepts in a goal

is the frozen-exchange rule. The Maude pattern matching mechanism was

very useful in the implementation of this rule. The rule select randomly 2 a

2The selection is made by pattern matching of a context module commutative and associ-
ative, thanks to the attributes of the operator comma, the constructor of Set{Expression}
terms.

Chapter VIII. A Prototype Theorem Prover 101

context (sets of frozen concepts) to unfreeze – [O:Nat, 0, ES1] and [O:Nat,

0, ES2] – and freeze the set of formulas that are in the current context –

ALFA and GAMMA. The pattern also guarantee that only contexts saved but

not already reduced (second argument equals zero) will be selected. The new

context created in the goal N has the second argument equals one – it is a

reduced context. Maude’s pattern matching mechanism is very flexible and

powerful. On the other hand, this rule does not provide much control over the

choice of contexts (set of frozen formulas) that will be unfreeze. This choice

can have huge impact in the performance of a proof construction.

crl [frozen-exchange] :

[X from Y by Q is [O:Nat,0,ES1], FALFA : ALFA |-

GAMMA : FGAMMA, [O:Nat,0,ES2]]

goals((X, XS)) next(N)

=>

goals((XS, N)) next(N + 1)

[X from Y by Q is [O:Nat,0,ES1], FALFA : ALFA |-

GAMMA : FGAMMA, [O:Nat,0,ES2]]

[N from X by ’frozen-exchange is

([M:Nat,1,ALFA], FALFA) : ES1 |- ES2 : (FGAMMA, [M:Nat,1,GAMMA])]

if M:Nat := next-frozen(union(([O:Nat,0,ES1], FALFA),

([O:Nat,0,ES2], FGAMMA))) .

(b) The Interface

The current user interface of the prototype is the Maude prompt. We do

not provide any high level user interface yet, although different alternatives

exist for it. For example, we could implement the DIG [2] interface using

Maude external objects [18]. The system module THEOREM-PROVER is the main

interface with the prototype. It basically declares some constants of the sort

AConcept (atomic concepts) and ARole (atomic roles) and the operator th end.

This operator is a “syntax sugar” to assist the user in the creation of the proof

term in its initial state ready to be rewritten.

mod THEOREM-PROVER is

inc SYSTEM .

ops A B C D E : -> AConcept .

ops R S T U V : -> ARole .

Chapter VIII. A Prototype Theorem Prover 102

op th_end : Sequent -> Goal .

vars ALFA GAMMA : Set{Expression} .

var SEQ : Sequent .

eq th SEQ end =

[0 from 0 by ’init is SEQ] next(1) goals(0) .

endm

The module THEOREM-PROVER includes the module SYSTEM, where SYSTEM

can be any of the implemented systems presented in the previous sections.

With the help of the above module we can prove the theorem from

Example 1 (1) using two alternatives.

∃child.> u ∀child.¬(∃child.¬Doctor) v ∃child.∀child.Doctor (1)

We can use the already declared constants assuming A = Doctor and the

role R = child or we can declare two new constants in a module that imports

THEOREM-PROVER.

mod MY-TP is

inc THEOREM-PROVER .

op child : -> ARole .

op Doctor : -> AConcept .

endm

In the second case, after entering the module MY-TP in Maude, we could

test the proof initialization with the Maude command reduce (red). The

command rewrite the given term using only equations. In that case, only the

equation of the operator th end from module THEOREM-PROVER is applied.

Maude> red th < nil | EXIST(child, CTRUE) &

ALL(child, ~ EXIST(child, ~ Doctor)) > |-

< nil | EXIST(child, ALL(child, Doctor)) > end .

result Proof: next(1) goals(0)

[0 from 0 by ’init is

< nil | EXIST(child, CTRUE) & ALL(child, ~ EXIST(child, ~ Doctor)) >

|-

< nil | EXIST(child, ALL(child, Doctor)) >]

Chapter VIII. A Prototype Theorem Prover 103

To construct a proof of a given sequent, we can use Maude rewrite or

search command. The former will return one possible sequence of rewriting

steps until a canonical term 3 is reached. The latter will search for all possible

paths of rewriting steps from the given initial state until the final given state.

Below we present the same sequent with Doctor and child replaced by

A and R respectively. As we can see, due the presence of weak rules and the

lack of a strategy to control the applications of the rules, we failed to obtain a

proof for a valid sequent using the command rewrite.

Maude> rew th < nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) > end .

result Proof: next(3) goals(2)

[0 from 0 by ’init is

< nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) >]

[1 from 0 by ’weak-l is empty |- < nil | EXIST(R, ALL(R, A)) >]

[2 from 1 by ’weak-r is empty |- empty]

The rewrite command explores just one possible sequence of rewrites

of a system described by a set of rewrite rules and an initial state. The

search command allows one to explore (following a breadth-first strategy) the

reachable state space in different ways.

Using the search command we can ask for all possible proof trees that

can be constructed for a given sequent. Moreover, we can limit the space search

with the two optional parameters [n,m] where n providing a bound on the

number of desired solutions and m stating the maximum depth of the search.

The search arrow =>! indicates that only canonical final states are allowed,

that is, states that cannot be further rewritten. On the left-hand side of the

search arrow we have the starting term, on the right-hand side the pattern

that has to be reached, in the case below, P:Proof goals(empty).

Maude> search [1,20]

th < nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) >

|- < nil | EXIST(R, ALL(R, A)) > end

=>! P:Proof goals(empty) .

P:Proof --> next(10)

[0 from 0 by ’init is

3A term that cannot be further rewritten.

Chapter VIII. A Prototype Theorem Prover 104

< nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) >]

[1 from 0 by ’and-l is < nil | ALL(R, ~ EXIST(R, ~ A)) >,

< nil | EXIST(R, CTRUE) > |- < nil | EXIST(R, ALL(R, A)) >]

[2 from 1 by ’forall-l is < nil | EXIST(R, CTRUE) >,

< al(R) | ~ EXIST(R, ~ A) > |- < nil | EXIST(R, ALL(R, A)) >]

[3 from 2 by ’neg-l is < nil | EXIST(R, CTRUE) > |-

< nil | EXIST(R, ALL(R, A)) >, < ex(R) | EXIST(R, ~ A) >]

[4 from 3 by ’exist-r is < nil | EXIST(R, CTRUE) > |-

< ex(R) | ALL(R, A) >, < ex(R) | EXIST(R, ~ A) >]

[5 from 4 by ’forall-r is < nil | EXIST(R, CTRUE) > |-

< ex(R) | EXIST(R, ~ A) >, < ex(R) al(R) | A >]

[6 from 5 by ’exist-r is < nil | EXIST(R, CTRUE) > |-

< ex(R) ex(R) | ~ A >, < ex(R) al(R) | A >]

[7 from 6 by ’exist-l is < ex(R) | CTRUE > |- < ex(R) ex(R) | ~ A >,

< ex(R) al(R) | A >]

[8 from 7 by ’prom-exist is < nil | CTRUE > |-

< ex(R) | ~ A >, < al(R) | A >]

[9 from 8 by ’neg-r is < nil | CTRUE >, < al(R) | A > |- < al(R) | A >]

Above, the variable P in the input pattern was bound in the result to the

desired proof term, that is, the one with goals(empty). Since P was the only

variable in the pattern, the result shows only one binding. In other worlds,

search results are bindings for variables in the pattern given after the search

arrow.

Distributed with our prototype there is a simple Maude-2-LATEX proof

terms translator developed by Caio Mello. 4 The translator receives as input a

term like the one above and return its representation in LATEX using the LATEX

package bussproof [12]. The output in LATEX is:

>, ∀RA⇒ ∀RA
¬-r

> ⇒ ∃R¬A, ∀RA
prom-∃∃R> ⇒ ∃R,∃R¬A, ∃R,∀RA
∃-l

∃R.> ⇒ ∃R,∃R¬A, ∃R,∀RA
∃-r

∃R.> ⇒ ∃R∃R.(¬A), ∃R,∀RA
∀-r

∃R.> ⇒ ∃R∃R.(¬A), ∃R∀R.A
∃-r

∃R.> ⇒ ∃R∃R.(¬A),∃R.∀R.A
¬-l

∃R.>, ∀R¬∃R.(¬A)⇒ ∃R.∀R.A
∀-l

∃R.>, ∀R.(¬∃R.(¬A))⇒ ∃R.∀R.A
u-l

∃R.> u ∀R.(¬∃R.(¬A))⇒ ∃R.∀R.A
4An undergraduate student working at TecMF/PUC-Rio Lab.

Chapter VIII. A Prototype Theorem Prover 105

(c) Defining Proof Strategies

An automated theorem prover would not be efficient or even useful if

we cannot provide strategies for deduction rules applications. Moreover, from

Section IV.2 we know that SC[]ALC deduction rules were designed to be used

in a very specific strategy. Maude support two ways to define strategies for

rewriting rules application. The first option is the original one, we can use

Maude reflection feature to control of rules applications at the metalevel

developing a full user-definable internal strategies. The second options is to

use the Maude Strategy Language [25].

The strategy language allows the definition of strategy expressions that

control the way a term is rewritten. The strategy language was designed to be

used at the object level, rather than at the metalevel. There exist a strict

separation between the rewrite rules in system modules and the strategy

expressions, that are specified in separate strategy modules. Moreover, a

strategy is described as an operation that, when applied to a given term,

produces a set of terms as a result, given that the process is nondeterministic

in general. In the current version of Maude, not all features of the strategy

language are available in Core Maude. To be more precise, the Core Maude

does not support recursive strategies. Recursion is achieved by giving a name

to a strategy expression and using this name in the strategy expression itself or

in other related strategies. Given that limitation, we use the prototype strategy

language implementation in Full Maude [18].

In our current prototype version we defined the strategy described in

Section IV.2 to control SC[]ALC rules applications. The basic strategies consist

of the application of a rule (identified by the corresponding rule label) to a

given term. Strategies operators allow the construction of complex strategy

expressions.

The strategy expand presented below controls how the rules of SC[]ALC

ought to be applied. It can be interpreted as: the system must first try to

reduce the given term using one of the promotional rules (the union operator

is |). If it is successful, the system must try to further transform the result

term using ∀-{l,r}, ∃-{l,r}, t-{l,r}, u-{l,r} or ¬-{l,r} (the operator ; the a

concatenation). If neither the promotional rules nor the previous mentioned

rules could be applied, one of the weak rules should be tried. If none of the

previous rules could by applied, the frozen-exchange rule must be tried.

(smod BACKTRACKING-STRAT is

strat solve : @ Proof .

Chapter VIII. A Prototype Theorem Prover 106

strat expand : @ Proof .

var P : Proof .

sd expand := (((try(prom-exist | prom-all) ;

(and-l | and-r | or-l | or-r | forall-l | forall-r |

exist-l | exist-r | neg-l | neg-r))

orelse (weak-l | weak-r))

orelse frozen-exchange) .

sd solve := if (match P s.t. (is-solution(P))) then

idle

else

expand ; if (match P s.t. (is-ok(P))) then solve else idle fi

fi .

endsm)

The strategy expand defines how each proof step will be performed. The

solve strategy is the complete strategy to construct a proof. It is basically

a backtracking procedure, on each step, the system verifies if it has already

a solution – using the defined operator is-solution. If the term is not a

solution, it executes the expand step and check if the result term is a valid

term, that is, a term still useful to reach to a solution – this is done with the

operator is-ok. If the term is still valid but not yet a solution it continues

recursively.

The implementations of is-solution and is-ok were done in a separ-

ated module. The operator is-ok evaluates to false whenever we detected a

loop in the proof construction. There are differents loop situations, below we

present one of them, when we have a sequent with two equal sets of frozen

formulas (contexts).

op is-ok : Proof -> Bool .

op is-solution : Proof -> Bool .

eq is-solution(P:Proof goals(empty)) = true .

eq is-solution(P:Proof) = false [owise] .

...

eq is-ok(P:Proof

[M from N by RL is FALFA1, [X1, X3, FALFA0],

[X2, X4, FALFA0] : ALFA |- GAMMA :

[X1, X3, FGAMMA0], [X2, X4, FGAMMA0], FGAMMA1])

Chapter VIII. A Prototype Theorem Prover 107

= false .

eq is-ok(P:Proof) = true [owise] .

Using the solve strategy defined above, we can prove the subsumption

from Equation 1 in SC[]ALC. We use the strategy aware command srew instead

of the rew. In additional, since we are not using Full Maude, the command in

Maude prompt is inside parentheses.

Maude> (srew th empty : < nil | EXIST(R, CTRUE) &

ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) > : empty end using solve .)

result Proof :

goals(empty)next(10)

[0 from 0 by ’init is empty : < nil | EXIST(R,CTRUE) &

ALL(R,~ EXIST(R,~ A))> |-

< nil | EXIST(R,ALL(R,A))> : empty]

[1 from 0 by ’and-l is empty : < nil | ALL(R,~ EXIST(R,~ A))>,

< nil | EXIST(R,CTRUE)> |- < nil | EXIST(R,ALL(R,A))> : empty]

[2 from 1 by ’forall-l is empty : < nil | EXIST(R,CTRUE)>,

< al(R)| ~ EXIST(R,~ A)> |- < nil | EXIST(R,ALL(R,A))> : empty]

[3 from 2 by ’exist-l is empty : < al(R)| ~ EXIST(R,~ A)>,

< ex(R)| CTRUE > |- < nil | EXIST(R,ALL(R,A))> : empty]

[4 from 3 by ’exist-r is empty : < al(R)| ~ EXIST(R,~ A)>,

< ex(R)| CTRUE > |- < ex(R)| ALL(R,A)> : empty]

[5 from 4 by ’forall-r is empty : < al(R)| ~ EXIST(R,~ A)>,

< ex(R)| CTRUE > |- < ex(R)al(R)| A > : empty]

[6 from 5 by ’neg-l is empty : < ex(R)| CTRUE > |- < ex(R)| EXIST(R,~ A)>,

< ex(R)al(R)| A > : empty]

[7 from 6 by ’prom-exist is empty : < nil | CTRUE > |- < nil | EXIST(R,~ A)>,

< al(R)| A > : empty]

[8 from 7 by ’exist-r is empty : < nil | CTRUE > |- < al(R)| A >,

< ex(R)| ~ A > : empty]

[9 from 8 by ’neg-r is empty : < nil | CTRUE >, < al(R)| A > |-

< al(R)| A > : empty]

IX
Conclusion

IX.1 Contributions

Description Logics have well-known and mature proof procedures based

on Tableaux for reasoning on Ontologies and Knowledge Bases. The task of

understanding the outcomes of formal proof procedure or consistency tests

is sometimes quite hard. Explanations on the reasons for some subsumptions

either hold or not are demanding. The latter is in general supported by a

human-readable translation of the witness construction obtained by the usual,

first-order inspired, Tableaux DL procedure. For the former, however, an

explanation should be obtained from the proof resulted by this very Tableaux

procedure.

Considering the logical motivation of providing a purely propositional

(not based on nominals) proof procedure for propositional DLs, we show two

Sequent Calculus and two Natural Deductions defined by purely propositional

terms. Considering the concrete use of DL reasoners, we believe that the use of

a system that allow the use of non-analytic cuts (non-atomic cuts) is interesting

whenever one takes into account the super-polynomial size of some cut-free

proofs (such as the Pigeonhole Principle). Besides that, producing proofs of

subsumptions inside a TBOX, without making use of the terminological gap

imposed by the traditional Tableaux procedure, seems to an interesting step

towards better explanation generations.

The main contributions of this thesis are twofold. Firstly, from the point

of view of producing short proofs, we define proof systems that are able to

produce proofs or derivations with cuts (SCALC, SC[]ALC and its extension for

ALCQI) as well as non-normal proofs (NDALC and its extension for ALCQI).

The elimination of the cut rule as well as the normalization theorem are

mandatory proof-obligations performed in this thesis aiming to prove that

the systems are minimally mechanizable. The other contribution made in this

thesis relies on the fact that the Sequent Calculus as well as the Natural

Deduction are not strongly based on first-order mechanisms and interpretations

Chapter IX. Conclusion 109

as the known Tableaux procedure are. The systems are purely propositional.

In order to achieve this feature, a strong use of labeled formulas is made. Thus,

both, the Sequent Calculus and the Natural Deduction are labeled deductive

systems, following the tradition initiated by Dov Gabbay [29]. Both features are

steps towards the possibility of generating quite human-readable explanations.

Besides those previous mentioned contribuitions we think that presenting an

alternative proof procedure for a well-know logic is a contribution in its own.

Regarding the Natural Deduction systems presented for ALC and

ALCQI, despite providing a variation of themes, the main motivation is the

possibility of getting ride on a weak form of the Curry-Howard isomorphism

in order to provide explanations with greater content. This last affirmative

takes into account that the reading (explanatory) content of a proof is a direct

consequence of its computational content.

We not only presented ND systems forALC andALCQI but also showed,

by means of some examples, how they can be useful to explain formal facts

on theories obtained from UML models. Instead of UML, ER could also be

used according a similar framework. Regarding the examples used and the

explanations obtained, it is worthwhile noting that the Natural Deduction

proofs obtained are quite close to the natural language explanation provided.

It is a future task to provide the respective natural language explanation for

a comparison. We aimed to show that ND deduction systems are better than

Tableaux and Sequent Calculus as structures to be used in explaining theorem

when validating theories in the presence of false positives. That is, when a

valid subsumption should not be the case. We also remark and show how

normalization is important in order to provide well-structured proofs.

We brifey suggest how to use the structural feature of sequent calculus

in favour of producing explanations in natural language from proofs. As it

was remarked at the introduction, the use of the cut-rule can provide shorter

proofs. The cut-rule does not increase the complexity of the explanation, since

it simply may provide more structure to the original proof. With the help of

the results reported in this thesis one has a solid basis to build mechanisms

to provide shorter and good explanation for ALC subsumption in the context

of a KB authoring enviroment. The inclusion of the cut-rule, however, at the

implementation level, is a hard one. Presently, there are approaches to include

analytical cuts in Tableaux, as far as we know there is no research on how to

extend this to ALC Tableaux. This puts our results in advantage when taking

explanations, and the size of the proofs as well, into account. There are also

other techniques, besides the use of the cut-rule, to produce short proofs in

the sequent calculus, see [31] and [26], that can be used in our context.

Chapter IX. Conclusion 110

IX.2 Future Work

Future investigation must include the following topics:

– The extension of the calculi in order to deal with stronger Description

Logics, mainly, SHIQ [1];

– The development of methods for proof explanation extraction from

proofs;

– A proof of completeness for NDALCQI and SCALCQI should be obtained

by extending the completeness proof for SCALC;

– The development of constructive (Intuitionistic) versions of NDALC and

SCALC. The starting point should be the study of some proposed con-

structive semantics for ALC [20, 8, 46].

Bibliography

[1] F. Baader. The Description Logic Handbook: theory, implementation, and

applications. Cambridge University Press, 2003. II.1, II.1, II.2, II.3, II.4,

II.5, IV.1, VI.4, VII.3, IX.2

[2] Sean Bechhofer and Peter F. Patel-Schneider. Dig 2.0: The dig description

logic interface overview, May 2006. VIII.3(b)

[3] Gianluigi Bellin, Martin Hyland, Edmund Robinson, and Christian Urban.

Categorical proof theory of classical propositional calculus. Theor. Com-

put. Sci., 364(2):146–165, 2006. V

[4] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning

on UML class diagrams. Artificial Intelligence, 168(1-2):70–118, 2005. VI,

VII.3, VII.3

[5] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined

program extraction form classical proofs. Ann. Pure Appl. Logic, 114(1-

3):3–25, 2002. V

[6] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P.F. Patel-

Schneider. Explaining ALC subsumption. In Proceddings of the Interna-

tional Workshop on Description Logics, pages 33–36, 1999. I.3

[7] Alexander Borgida, Enrico Franconi, Ian Horrocks, Deborah L. McGuin-

ness, and Peter F. Patel-Schneider. Explaining ALC subsumption. In

Patrick Lambrix, Alexander Borgida, Maurizio Lenzerini, Ralf Möller, and

Peter F. Patel-Schneider, editors, Proceedings of the 1999 International

Workshop on Description Logics 1999, volume 22, Linköping, Sweden,

July 1999. I.2, III.1

[8] Loris Bozzato, Mauro Ferrari, Camilo Fiorentini, and Guido Fiorino. A

constructive semantics for ALC. In Workshop on Description Logics,

pages 219–226, 2007. IX.2

[9] R. Brachman, D. L. McGuiness, P. F. Patel-Schneider, L. Alperin Resnick,

and A. Borgida. Living with classic: When and how to use a kl-one-

Bibliography 112

like language. In J. Sowa, editor, Principles of Semantic Networks:

Explorations in the Representation of Knowledge, pages 401–456. Morgan

Kaufmann, San Mateo, 1991. I.2

[10] R. J. Brachman, R. E. Fikes, and H. J. Levesque. Krypton: A functional

approach to knowledge representation. IEEE Computer, 16:67– 73, 1983.

I.2

[11] R. J. Brachman and J. Schmolze. An overview of the kl-one knowledge

representation system. Cognitive Science, 9(2), 1985. I.2

[12] Sam Buss. The “buss proofs” latex/tex style file for creating

proof trees. Available at http://math.ucsd.edu/~sbuss/ResearchWeb/

bussproofs/index.html, 2006. VIII.3(b)

[13] Samuel R. Buss. An introduction to proof theory. In Samuel R. Buss,

editor, Handbook of Proof Theory, Studies in Logic and the Foundations

of Mathematics, page 811. Elsevier, Amsterdam, 1998. III.4

[14] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio

Lenzerini, and Riccardo Rosati. Conceptual modeling for data integration.

In Alex Borgida, Vinay Chaudhri, Paolo Giorgini, and Eric Yu, editors,

John Mylopoulos Festschrift, volume 5600 of Lecture Notes in Computer

Science. Springer, 2009. To appear. VI

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele

Nardi, and Riccardo Rosati. Information integration: Conceptual model-

ing and reasoning support. In Proc. of the 6th International Conference

on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.

VI

[16] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo

Rosati, and Guido Vetere. DL-Lite: Practical reasoning for rich DLs. In

Proc. of the 2004 Description Logic Workshop, DL 2004, volume 104 of

CEUR Electronic Workshop Proceedings, http: // ceur-ws. org , 2004.

VI

[17] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description

logics for conceptual data modeling. In Jan Chomicki and G. Saake,

editors, Logics for Databases and Information Systems, pages 229–263.

Kluwer Academic Publisher, 1998. VI

[18] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso

Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. Maude manual (version

http://math.ucsd.edu/~sbuss/ResearchWeb/bussproofs/index.html
http://math.ucsd.edu/~sbuss/ResearchWeb/bussproofs/index.html
http://ceur-ws.org

Bibliography 113

2.4). Technical report, SRI International, 2009. VIII, VIII.1, VIII.3(b),

VIII.3(c)

[19] Denise Aboim Sande de Oliveira, Clarisse Sieckenius de Souza, and

Edward Hermann Haeusler. Structured argument generation in a logic

based kb-system. In Lawrence S. Moss, Jonathan Ginzburg, and Maarten

de Rijke, editors, Logic Language and Computation, number 96 in CSLI

Lecture Notes, pages 237–265. CSLI, Stanford, California, 1 edition, 1999.

I.3

[20] Valéria de Paiva. Constructive description logics: what, why and how. In

Context Representation and Reasoning, Riva del Garda, 2006. IX.2

[21] X. Deng, V. Haarslev, and N. Shiri. Using patterns to explain inferences

in ALCHI. Computational Intelligence, 23(3):386–406, 2007. I.2

[22] Fernando N. do Amaral, C. Baźılio, G. M. Hamazaki da Silva, Alexandre

Rademaker, and Edward Hermann Haeusler. An ontology-based approach

to the formalization of information security policies. EDOCW, 0:1, 2006.

I.3

[23] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of

concept languages. Information and Computation, 134(1):1–58, 1997. I.2

[24] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner

Nutt. The complexity of concept languages. Information and Compu-

tation, 134(1):1–58, 1991. I.2

[25] S. Eker, N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Deduction,

strategies, and rewriting. Electronic Notes in Theoretical Computer Sci-

ence, 174(11):3–25, 2007. VIII.3(c)

[26] M. Finger. DAG sequent proofs with a substitution rule. In S. Artemov,

H. Barringer, A.S. d’Avila Garcez, L.C. Lamb, and J. Woods, editors,

We will show Them – Essays in honour of Dov Gabbay 60th birthday,

volume 1 of Kings College Publications, pages 671–686. Kings College,

London, 2005. IX.1

[27] M. Finger and Dov Gabbay. Equal Rights for the Cut: Computable Non-

analytic Cuts in Cut-based Proofs. Logic Journal of the IGPL, 15(5–

6):553–575, 2007. I.2

[28] M. Fitting. Proof methods for modal and intuitionistic logics. Reidel,

1983. I.3

Bibliography 114

[29] D. M. Gabbay. Labelled deductive systems, volume 1. Oxford University

Press, 1996. I.3, IX.1

[30] Jean-Yves Girard, Paul Graham Taylor, and Yves Lafont. Proofs and

types. Cambridge University Press New York, 1993. V

[31] L. Gordeev, E.H. Haeusler, and V. Costa. Proof compressions with circuit-

structured substitutions. to appear in Zapiski Nauchnyh Seminarov

POMI, 2008. I.2, IX.1

[32] W3C OWL Working Group. Owl 2 web ontology language document

overview. See http://www.w3.org/TR/owl2-overview/., 2009. I.1

[33] V. Haarslev and R. Möller. Racer system description. In R. Goré,

A. Leitsch, and T. Nipkow, editors, International Joint Conference on

Automated Reasoning, IJCAR’2001, June 18-23, Siena, Italy, pages 701–

705. Springer-Verlag, 2001. I.2

[34] Edward Hermann Haeusler and Alexandre Rademaker. Is it important

to explain a theorem? a case study on uml and ALCQI. In ER ’09:

Proceedings of the ER 2009 Workshops (CoMoL, ETheCoM, FP-UML,

MOST-ONISW, QoIS, RIGiM, SeCoGIS) on Advances in Conceptual

Modeling - Challenging Perspectives, pages 34–44, Berlin, Heidelberg,

2009. Springer-Verlag. I.4

[35] Edward Hermann Haeusler and C. J. Renteria. A natural deduction

system for CTL. Bulletin of The Section of Logic, 31(4):231, 2002. I.3

[36] A. Haken. The Intractability of Resolution. Theoretical of Computer

Science, 39:297–308, 1985. I.2

[37] T. Hoppe, C. Kindermann, J. J. Quantz, A. Schmiedel, and M. Fischer.

Back v5 tutorial & manual. Technical Report KIT Report 100, Technische

Universitat Berlin, 1993. I.2

[38] Ullrich Hustadt and Renate A. Schmidt. Issues of decidability for

description logics in the framework of resolution. In In Automated

Deduction in Classical and Non-Classical Logics, pages 191–205. Springer,

2000. I.2

[39] H.J. Levesque and R.J. Brachman. Expressiveness and tractability in

knowledge representation and reasoning. Computational intelligence,

3(2):78–93, 1987. II.5

http://www.w3.org/TR/owl2-overview/

Bibliography 115

[40] T. Liebig and M. Halfmann. Explaining subsumption in ALEHFR+

tboxes. In Ian Horrocks, Ulricke Sattler, and Frank Wolter, editors, Proc.

of the 2005 International Workshop on Description Logics - DL2005,

pages 144–151, Edinburgh, Scotland, July 2005. I.2

[41] R. MacGregor. Using a description classifier to enhance deductive infer-

ence. In Proceedings Seventh IEEE Conference on AI Applications, pages

141–147, Miami, Florida, February 1991. I.2

[42] T. S. E. Maibaum. The epistemology of validation and verification

testing. In Testing of Communicating Systems, 17th IFIP TC6/WG 6.1

International Conference, TestCom 2005, pages 1–8, Montreal, Canada,

2005. VII.1

[43] Deborah L. McGuinness. Explaining Reasoning in Description Logics.

PhD thesis, Rutgers University, 1996. I.2, I.3

[44] Deborah L. McGuinness and Alexander Borgida. Explaining subsumption

in description logics. In International Joint Conference on Artificial

Inteligence, volume 14, pages 816–821, 1995. I.2

[45] D.L. McGuinness. Explaining Reasoning in Description Logics. PhD

thesis, Rutgers University, 1996. I.3

[46] Michael Mendler and Stephan Scheele. Towards constructive DL for ab-

straction and refinement. In Franz Baader, Carsten Lutz, and Boris

Motik, editors, Proceedings of the 21st International Workshop on De-

scription Logics, volume 353 of CEUR Workshop Proceedings, pages 13–

16, Dresden, Germany, May 2008. CEUR-WS.org. IX.2

[47] José Meseguer. Conditional rewriting logic as a unified model of concur-

rency. Theoretical Computer Science, 96(1):73–155, 1992. VIII.1

[48] M. Minsky. A framework for representing knowledge. In P. H. Winston,

editor, The Psychology of Computer Vision, pages 211–277. McGraw-Hill,

New York, 1975. I.1

[49] D. Prawitz. Natural deduction: a proof-theoretical study. PhD thesis,

Almqvist & Wiksell, 1965. V.4, VII.1, VII.1

[50] D. Prawitz. Natural deduction: a proof-theoretical study. PhD thesis,

Almqvist & Wiksell, 1965. V.4

Bibliography 116

[51] J. Joachim Quantz, Guido Dunker, Frank Bergmann, and Ivonne Kellner.

The flex system. Technical Report Kit Report 124, Technische Universitat

Berlin, 1995. I.2

[52] M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic

Information Processing, pages 216–270, Cambridge (Mass), 1968. MIT

Press. I.1

[53] Alexandre Rademaker, Fernando N. do Amaral, and Edward Hermann

Haeusler. A Sequent Calculus for ALC. Monografias em Ciência da

Computação 25/07, Departamento de Informática, PUC-Rio, 2007. I.4

[54] Alexandre Rademaker and Edward Hermann Haeusler. Toward short and

structural ALC-reasoning explanations: A sequent calculus approach. In

Proceedings of Brazilian Symposium on Artificial Inteligence. Advances in

Artificial Intelligence – SBIA 2008, pages 167–176. Springer-Verlag, 2008.

http://dx.doi.org/10.1007/978-3-540-88190-2_22. I.4

[55] Alexandre Rademaker, Edward Hermann Haeusler, and Luiz Carlos

Pereira. On the proof theory of ALC. In The Many Sides of Logic. Pro-

ceedings of 15th Brazilian Logic Conference. College Publications, London,

2008. A resumed version is available at http://www.cle.unicamp.br/

e-prints/vol_8,n_6,2008.html. I.4

[56] Christian Jacques Renter¡C3¿¡AD¿a and Edward Hermann Haeusler. A

natural deduction system for keisler logic. Eletronic Notes in Theoretical

Computer Science, 123:229–240, 2005. I.3

[57] C. J. Renteria, E.H. Haeusler, and P.A.S. Veloso. NUL: Natural deduction

for ultrafilter logic. Bulletin of The Section of Logic, 32(4):191–200, 2003.

I.3

[58] C.J. Renteria. Uma abordagem geral para quantificadores em dedução

natural. PhD thesis, PUC-Rio, DI, 2000. I.3

[59] Klaus Schild. A correspondence theory for terminological logics: prelim-

inary report. In IJCAI’91: Proceedings of the 12th international joint

conference on Artificial intelligence, pages 466–471, San Francisco, CA,

USA, 1991. Morgan Kaufmann Publishers Inc. Also published at TR 91,

Technische Universitat Berlin. II.6

[60] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 48(1):1–26, 1991. I.2, I.3, II.5

http://dx.doi.org/10.1007/978-3-540-88190-2_22
http://www.cle.unicamp.br/e-prints/vol_8,n_6,2008.html
http://www.cle.unicamp.br/e-prints/vol_8,n_6,2008.html

Bibliography 117

[61] J. Schmolze and D. Israel. Kl-one: Semantics and classification. Technical

Report 5421, BBN, 1983. I.2

[62] J.P. Seldin. Normalization and excluded middle. I. Studia Logica,

48(2):193–217, 1989. V.4

[63] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical owl-dl reasoner. Journal of Web

Semantics, 5(2):51–53, 2007. I.2

[64] R. Smullyan. First-Order Logic. Springer-Verlag, 1968. VII.1, VII.1

[65] John F. Sowa, editor. Principles of Semantic Networks: Explorations in

the Representation of Knowledge. Morgan Kaufmann, Los Altos, 1991.

I.1

[66] G. Takeuti. Proof Theory. Number 81 in Studies in Logic and the

Foundations of Mathematics. North-Holland, 1975. III.4, VII.1, VII.1

[67] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System

description. Lecture Notes in Computer Science, 4130 LNAI:292–297,

2006. I.2

	A Proof Theory for Description Logics
	Abstract
	Resumo
	Contents
	Introduction
	Description Logics
	Motivation
	What this thesis is about
	How this thesis is organized

	Background
	A Basic Description Logic
	Individuals
	Description Logics Family
	Reasoning in DLs
	Inference algorithms
	ALC axiomatization

	The Sequent Calculus for ALC
	A Sequent Calculus for logicALC
	SCALC Soundness
	The Completeness of SCALC
	The cut-elimination theorem

	Comparing SCALC with other ALC Deduction Systems
	Comparing SALC with the Structural Subsumption algorithm
	Obtaining counter-models from unsuccessful proof trees

	A Natural Deduction for ALC
	The NDALC System
	NDALC Soundness
	NDALC Completeness
	Normalization theorem for NDALC

	Towards a proof theory for ALCQI
	ALCQI Introduction
	The Sequent Calculus for ALCQI
	SCALCQI Soundness
	On SCALCQI Completeness
	A Natural Deduction for ALCQI
	NDALCQI Soundness

	Proofs and Explanations
	Introduction
	An example of Explanations from Proofs in SCALC
	Explaining UML in NDALCQI

	A Prototype Theorem Prover
	Overview of the Maude System
	A Prototype Theorem Prover
	The Logical Language
	The Sequent Calculus

	The SCALC System
	The SC[]ALC System Implementation
	The Interface
	Defining Proof Strategies

	Conclusion
	Contributions
	Future Work

