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Abstract
This article shows that some decision problems for the tionistic Hybrid Modal Logics IK are PSPACE-complete.

1 Introduction

In [3], a general approach to prove computational complexitHybrid Logics is presented. There, it is shown how to abta
from a formulaa, a 2-person game, designed to be polynomially implememtezhiAlternating Turing Machine, such that,
deciding existence of winning strategy for one of the playisrequivalent to decide satisfiability (SAT) af This approach

is used to show that SAT is in PSPACE, since any polynomiaé timplementation on an Alternating Turing Machine can
be done in ordinary Turing Machine using polynomial spacer Hybrid Modal K, for example, it is possible to conclude
PSPACE-completeness of SAT, sinkeis already PSPACE-hard.

The approach briefly explained above has been applied taiCédodal Logics. In this article we adapt the approach in
order to take care of Intuitionistic Modal Logics. We prov@HACE-completeness of Intuitionistic Modal KK( as presented
in [22, 25]). It is worth noting that the authors are not awaf@ny result on the computational complexity of the loti{c
However, in a series of papers (see [30],[29],[28]), Wodted Zakharyaschev showed how to embed intuitionistic miodids
into standard modal logics extending the combinations oh# &4 (via extension of Goedel translation of intuitioristiodal
logic to S4). Given this translation and known complexitguks for standard modal logics, the PSPACE-completenestdw
follow for K andS4. In [30], it is shown a validity-preserving translation finalnt K formulas into ones in a bimodal logic
contained inS4 @ K. The intuition is that, th&4 modality takes care of the intuitionistic featureloft K, by means of a Geedel
translation, and< takes care of the ordinary modality of IntK. In IntK, theo is defined a®a = —-O-«. This (classical
?) definition ofc allowed an easier translation frommt K to the bimodal language than an independent approaciwould
take. Nevertheless, Fisher Servi has extended the Geedebtastation ofExt Int K., an interesting logic that imposes weaker
connection between and¢, into an extension of the bimod&al @ K. Various, intuitionisic based extensionsBitIntKq.
were studied (see [7, 20, 11, 12, 13, 10, 28, 21 PC ([24]) is a particularly interesting case, for Bull [7] hasopided a
translation of M I PC into monadic first-order intuitionistic logic. This provésat the computational complexity of SAT for
MIPC formulas is PSPACE-hard.

As it can be seen from the above paragraph, extensions of Ki@auiations are quite succesful in helping to providestor
case analysis for SAT problems in intuitionistic modal kxsyi However, when we take hybrid logics into account, theneoi
known translation of Intuitionistic Hybrid Modal Logid M L) into a proposicional language. In the caseléf M L, the
technique of preserving validity translations seems todsdass.
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1The reader is adviced th&ht K andI K are not the same logic



This article has two purposes: 1- We show that the technigesepted in [1] can be adapted to nontrivial bimodal logass,
itis the case of K2, and; 2- We show that this very technique can be used fottiotistic modal hybrid logic {H K). We prove
that both,/ K andI H K are PSPACE-hard, and as both are extensions of PSPACE-emMplL (Intuitionistic propositional
logic), then they are PSPACE-complete, regarding SAT.

Since our version of H K is an extension of K, section?? shows the proof of PSPACE-hardnesd éf K, leaving/ K's
proof of complexity as a corollary. The choice faff K is justified by the use we make of it in the formalization ofdeigeasoning
(see [16, 8, 15]). The kind of constructive reasoning paimtet to the distribution of over thev, and the adoption of the axiom
ol « L. Infactin [15, 16, 8] the legal knowledge is formalized byngsan intuitionistic version of the Description Logic
(ALC) that is obtained from a sub-logic dfH K by the usual relationship between description logic andidytmodal logic
languages (consult [1] for a detailed view). In the presetitia we focus only on the fact thdtH K is a hydrid intuitionistic
logic having/ K as its propositional basis. Finally it is important to stdiat a good reason to work withK" per seis the fact
that the only thing that we have to add to it in order to havédthe classical one) is the excluded middle law. In sec#@n
we advice the reader that the lodiél K is notI H M L. The latter can be seen as fragment of the intuitionistit-@irder logic
based oW K. While I H K is defined from an intuitionistic version of the descriptiogic ALC. In this section we argue that
ITHML is 2EXPTIME-hard. Finally, in sectio?we apply the technique presented in [3] to show thdtK and/ K are both
PSACE-complete. In the conclusion we discuss how this réstélated to TBOX reasoning id LC' and if we extend ALC to
ABOX reasoning we go to 2EXPTIME-hard satisfiability. The@pfof PSPACE-hardness éf{ K that is shown in sectiofd?
was firstly presented in the syntaxif LC and can be found in [9]. In order to show main point defendethisyarticle, namely
the power of using the technique developed in [3] to Hybrigids, we will use part of the proof found in [9] in the syntax of
IHK.

2 The Intuitionistic Modal Logic IK

IK was introduced during the 80’s in [25, 13, 23]. These mdaigics arise from interpreting the usual possible world&iteons
in an intuitionistic meta-theory. See [25] for a quite helpdiscussion on the many alternative intuitionistic lcgtbat are
possible to define , besidé#’. The language of K is the same of classical logic, namely:

pu=p| LI T]=p|eiApa|o1Vea|pr—= 2| Op|DOp

wherep is a propositional symbol i@, the propositional language 6§ .
A Hilbert calculus forl K is provided, after [23, 25, 13]. It contains all axioms ofiiibnistic propositional logic and axioms
and rules shown in Figure 1. The calculus implements theasyioal relationshi® - ¢, where© is a set of formulas.

all substitution instances of theorems of Int. Prop. Logic
O(p1 — p2) — (Opr — Ops)

Op1 = 2) = (1 — i)

Op1 V p2) = (Op1 V Op2)

CL— L

(1 — Oipa) = O(p1 — )

MP If o1 andp; — o are theoremsy, is a theorem too.

Nec If ¢ is atheorem thefly is a theorem too.

AN e

Figure 1: Thel K axiomatization

2Simpson, [25], argues thdtK is the true intuitionistic analoque @



The syntactical calculus will not be used directly in thiicke. It is shown also as a matter to help logicians to figure o
what are the general laws (. With this calculus we can provide an accountable definitiba consistent set dfK” formulas.

Definition 1 A set of formuld” is consistent il K, iff, T' t/ L

Instead of the calculus, we can also use the semanticalnsotio/ . The definition of interpretation is provided in next
paragraph and is the main definition to precisely define whatsatisfiable formula, and the sedT" of satisfiable formula,
under a fixed propositional set of symbdis

The constructivénterpretation off K is provided by astructureZ formed by a non-empty sek” of worlds, or states, a
(epistemié) partial-order<” on AZ, i.e., a reflexive, transitive and antisymmetric relatiarbinary relationR? C A% x AT
and mapping:dot” taking each atomic conceptc @ to a setp? C AZ which is closed undex?, i.e.,z € p? andz <% y
impliesy € p”. In the literature on modal logic, what we have just definealss called a (Kripke) model. We chose the term
interpretation and this denotative definition by stylisBasons. We also sometimes use structure as a synonymrpfaisdion,
this use is emphatic when refering to the subjacent matheahatructure.

Theinterpretatiorf is extended from atomic concepts to arbitrary concepts via:

TZ :deZ
LT =g 0
(= )I =g {z|VyeAley=>yd e}
(o1 A p2)t =df ¢1 Ny
(pr1 V)t =g pf Upd
(b1 = p2)t =g {z|Vy € AT.(zx 2yandy € ¢f) = y € p3}
(©p)t =4 {x| Ty € AT.(z,y) € RT andy € T}
(Op)t =g {z|Vye ATz <y=Vze Al (y,2) € RT = z € ¢*}

According to the semantics of IK, the structufeare models fod K whenever they satify two frame conditions:
F1 if w < w’ andwRv then3v’.w’ Ry’ andv < v’
F2 if v < v andwRv then3aw’.w’Rv’ andw < v’

The above conditions are diagrammatically expressed as:

R R
w' >/ and w' >/
A A
< Fy = < (F2) |=
R | ‘R
w——= w——7=

IK is simpler than [19] proposal of a constructive modal logincel K satisfies (like classicak) &L = L and<(¢q V
p2) = Cp1 V Copa.

We call the reader’s attention to note that, given an intggtionZ, = € ¢ is equivalent to say that holds in the model
7 at the stater, or in usual notatioT, z = ¢. Using the above defined notion isfterpretation we are in conditions to define
satisfiable formulas id K .

Definition 2 A formula« is satisfiable in/ K, iff, there is an interpretatiolf = <A, =<, R, -I>, such that, for eaclw € A,
T,w = a(i.e.w € of).

Definition 3 A setl” of formulas is satisfiable, iff, there is an interpretati®n= <A, =<, R, -I>, such that, for eaclw € A, for
eachy e I'N'T,w = .

SRegarding the relationship between the worlds in a intisitic possible world model, the relation between worlds ba taken as the set of propositions
that an hypothetical agent knows about the world



1K defines the usual (local) notion of logical consequencé jsh@mplete and sound regarding the system in figure 1 [25].

Definition 4 LetT" be a set off K formulas andr an I K formula. We say that is an I K logical consequence df, iff, for
every interpretatio = (A, <, R, T),Vw € A(Z,w T = I,w = o).

3 The Intuitionistic Hybrid Modal Logic IHML

A good way to improve the expressive power of a modal logio isansider hybrid extensions of it. The fundamental resdurc
that allows a logic to be called “hybrid” is a setrmdminals Nominals are a new kind of atomic symbol and they behavdasilyi

to proposition symbols. The key difference between a nohaind a proposition symbol is related to their valuation in@dei.
While the setV (p) for a proposition symbab can be any element @, the setV (i) for a nominali has to be a singleton set.
This way, each nominal is true at exactly one state (worldhefmodel, and thus, can be used to refer to this unique Stais.

is why these logics are called “hybrid”: they are still mottadics, but they have the capacity to refer to specific statdbe
model, like in first-order logic. For a general introducttorhybrid logics, [2] and [5] can be consulted.

Definition 5 Let us consider a hybrid language consisting of a&e&tf countably many proposition symbols (the elementls of
are denoted by, ¢, . . .), a set2 of countably many nominals (the element&aire denoted by, 4, .. .), such thatt NQ = @, the
intuitionistic connectives, Vv, — and A, modal operators> andd, and the operator®,, for each nominal (called satisfaction
operators The formulas are defined as follows:

eu=pli| L] T]=o[oiApa]| 0|1 Vs |pr— 2| 0] Op|Qp

We freely use the standard abbreviation< o2 for (o1 — v2) A (92 = ©1)

The definition of an interpretation for this language is thme as definition for ordinary (intuitionistic) modal loghut the
definition has to take care of nominals interpretation. Befatroducing the precise definition, we have to commertttthere
seems not to be a definitive answer to the question: “Whagisigfht Intuicionistic Hybrid Modal Logic” 2I H M L is built on
top of I K and is a conservative extension. If we add the excluded mitdI 7 M L. we obtainH M L, the Hybrid Modal Logic
(Classical).

Note that according to the definition of formula& M L, the formula@;: is well-formed. What does it mean ? At world
(state)y, the propositiori holds. Nowi is a proposition that holds only at the worldIn other words@;: says that and; are
the “same” world. In this way, there must be a way to companédgpregarding some equivalence notion. At the same time, d
to its intuitionistic feature, there is need to consider@alaotion for this equivalence relation, since each nohdeterminies
a possible set of alternatives worlds. Thus, the semanti¢¢/a// L. has to include a component to denote this set of possible
worlds, related to a given world. This semantics was idijtiptoposed by Ewald [10] for intuitionistic tense-logicchadopted
definitively for I H M L by Braiiner and de Paiva in [6]. The following definition canfieom [6].

Definition 6 Let P be a set of propositions an [HM L-model for ) is
M= <VV7 = {Aw}w€W7 {Nw}w€W7 {Rw}wEWa {Vw}w6W>y where :

1. W is the (non-empty) set of worlds, partially orderedXy

2. for eachw, A, is a non-empty set such thatif < v thenA,, C A,;

3. for eachw, ~,, is an equivalence relation oA, such that, ifv < v then~,,C~,,.
4, for eachw, R, C A, x A, suchthatifu < vthenR, C R,;

5. for eachw, V,, is a function from® to 2P+, such that, ifw < v thenV,,(p) C V,(p).

Moreover, for eachw andsi, j,4', j', if i ~,, @, j ~ j' andiR,,j theni’ Ry’. If i ~ ¢ andi € V,,(p) theni’ € V,,(p), for all
p € ®. This later condition together with 3, above, ensures tlipiivalent worlds must satisfy the same properties, Thedorm
condition together with 4 ensures th&t is an I K model, taking into account only the modal fragment.



In order to interpret the Hybrid language intd, we need to assign a unique world for each nominaidf the language. In
order to simplify the reading of the following definition, well considers that each nomina} is assigned to a unique world
and all nominals in the language are distinct. Given a madehs above, the relatioh, w, i = «, wherew € W, i € A,, and
« is a formula on the propositional language

Mw,i = piff i € Vy(p)

M, w,iE=n;iff i~y j

Myw,i = ar Aag iff Myw,i o andM,w,i = ag

Mw i = oy Vagiff Myw,i = aor Myw, i = as

Mw,i = a3 — asgiffforall v, w < v, if M,v,i = a; thenM,v,i = as

M, w,i = Q,aiff M,w,jFEa

Mw,i =L

M,w,i | Califfthereisk € Ay, iRk and M, w, k E «

M, w,i = Duiffforall v,w < v, forallk € A, if iR,k thenM, v, k E «

We say thatM,w = « wheneverM,w,i = « for everyi € A,. Analogously M = « wheneverM,w = «, for
everyw € W, under the supposition that the nominalsare interpreted uniquely in eack,,. Finally, a formulan is I H M L-
valid whenevertM = «, for every modelM. In [6] it is provided a sound and complete proof systems FtiviL, regarded
this semantics. It is known how one can translate modal ftamin first-order logic formulas preserving validity by mea
of the use of two-place relational symbols fBrand one monadic symbol(x) for each propositional letted in the modal
language. In this way, the modal formul#A A B) is translated ivz(R(a, x) — (A(z) A B(x))), O(B — C) is translated to
Jz(R(a,x) A (B(x) — C(x))), the nominal; is translated in the formula = ¢ and the formulaQ,,, A is translated inA(q),
for example. In general, a formudais translated into a formula*, such that, given a modéit and a worlda € W, it is the
case that\, w I- a iff M I+ o*(a) anda is interpreted aw. In this way,« is anI H M L tautology iff o* is a valid first-order
intuitionistic formula (see [6] for a detailed discussiamthis translation).

The translation, original from [6], mags{ M L formulas in a quite well-known fragment of first-order laage, namely, the
Guarded first-order logic with equality. The satisfabifitoblem for this fragment of (classical) first-order logEXPTIME-
complete. However, if we allow only two variables in the gigithe correponding SAT problem is only EXPTIME. These results
can be found in [14]. As the translation to Intuitionisticsfhorder logic has to take into account the order relatigarged to
the intuitionistic interpretation of the logical impli¢éah and the universal quantification, we have to consideagnfrent of
first-order (classical) logic that is able to express trarngi and reflexivity. It is shown in in [26, 17] that GF+TGamely
the guarded first-order logic that allows transitive relatonly as guards and any relation, including the equalisgvehere, is
2EXPTIME-hard. Thus[ H M L is 2EXPTIME-hard.

4 The Hybrid Logic THK

As already shown, Hybrid logics add to usual modal logics\a kied of propositional symbols, theominals and also the so-
calledsatisfaction operatorsBecause of the proximity of its corresponding descriptamic, namelyi ALC, we use here other
notation for nominals, instead of @. A nominal is assumedettrbe at exactly one world, so a nominal can be considered the
name of a world. Ifz is a nominal andX is an arbitrary formula, then a new formutaX called a satisfaction statement can be
formed. The satisfaction statementX expresses that the formul is true at one particular world, namely the world denoted
by x. In hindsight one can see that K shares with hybrid formalisms the idea of making the possitadrid semantics part of
the deductive system. WhilgX makes the relationship between worlds (exd?y) part of the deductive systelh/ K goes one
step further and sees the worlds themselvesas part of the deductive system, (as they are now nominadshensatisfaction
relation itself as part of the deductive system, as it is nayratactic operator, with modality-like properties. In t@st with
the above mentioned approaches, ours assign a truth valseste formulas, also called assertions, they are not ctsaspn
[4], for example. Below we define the syntax of general ags&st(4) and nominal assertionsV() for ABOX reasoning inl K.

“4In the formulasvz(R(a, ) — (A(z) A B(z))) and3z(R(a, z) A (B(z) — C(x))), R(a, z) is the guard.



Formulas §') also includes subsumption of concepts interpreted asogitipnal statements.
N:u=z:C|z: N A= N |zRy F:=A|CCC

wherez andy are nominalsR is a role symbol and’ is a concept. In particular, this allows (y: C), which is a perfectly
valid nominal assertion.

Definition 7 (outer nominal) In a nominal assertion:: ~, x is said to be the outer nominal of this assertion. That is,in a
assertion of the form: (y: ), = is the outer nominal.

Z,w = C meansw € C7T , that is, entityw satisfies concept' in the interpretatiorZ®. 7 is a model ofC, writtenZ |= C
iff Vvw € Z.Z,w = C. = C denotes thatZ.Z = C. All previous notions are extended to sé€tf concepts in the usual
way. Z,w = x: C holds, if and only if,Vz, =% z.Z,2, &= C. In a similar fashionZ,w | xRy holds ,if and only if,
Vz, = x.¥z, = y.(2}, 2)) € R*. Thatis, the evaluation of the hybrid formulas does not tat@account only the world, but
it has to be monotonically preserved. It can be observeddhaveryw’, if 22 < w’ andZ, 2’ = «, thenZ,w’ = « holds.

Given a seb ° of formulas and the sét of concepts, the following definition states whenI" entailss.

Definition 8 We write®©,T" = ¢ if it is the case that:
VI.((Vz € AT.(Z,z = ©)) = Y(Nom(T,6)).VZ = Nom(T,0).(Z,Z =T = 7,7 = 0)

Z'is vector of variablesy, . . ., z; and Nom(T', 0) is its vector of outer nominals occurrying in each nominaextion o’ U{d}.
x is the only outer nominal of a nominal assertign: v}, while a (pure) concept has no outer nominal.

i ALC arises from interpreting the usual possible worlds defingiin an intuitionistic meta-theory. As we already comreent
itis based on [6]/ H K is the hybrid logic associated ia1£CIn the latter, concepts are described as:

C,Du=A|L|T|~-C|CND|CUD|CCD|3RC|YRC

In THK concepts are taken as propositions and whenever the déstripgic semantics of a concept is a non-empty, its
corresponding proposition holds in the related semanfibg reader can see the strong correspondence wWhdpestands for
conceptsA for an atomic concepf for an atomic role.

1ALC syntax is more general than standatdC since it includes subsumptidn as a concept-forming operator. We have
no use for nested subsumptions, but they do make the systeear tadefine, so we keep the general rules. Negation could be
defined via subsumption, that isC = C C L, but we find it convenient to keep it in the language. The @nmtst could also
be omitted since it can be representechds In I H K nested subsumptions, on the other hand, have the usualmgesssigned
by the intuitionistic implication.

A constructive interpretation ofALC is a structureZ consisting of a non-empty sé&” of entities in which each entity
represents a partially defined individual; a refinementqraering=<Z on AZ, i.e., a reflexive and transitive relation; and an
interpretation function? mapping each role namg to a binary relationR? C A% x AT and atomic conceptl to a set
AT C AT which is closed under refinement, i.e.c A” andz <% y impliesy € AZ. The interpretatior is lifted from atomic
concepts to arbitrary concepts via:

TZ =df AT
17 =df )
(—C)Y =y {z|VyeATx=<y=ygCT}
)I =df cTnDT

(C (] D)I =df ctuD?
(CC D) =4 {x|VyeAl.(x 2yandy € CT) = y € D}

(AR.C)E =4 {2 | Ty € AT.(z,y) € RT andy € C*}

(VR.O)YT =g {z|VyeATox<y=Vze Al (y,2) € RT = 2 € C*}

5In IHK, this w is a world and this satisfaction relation is possible wodthantics
SHere we consider only acycled TBox with and=.



Interpretationg are models foi ALC if they satisfy two frame conditions 2 and 2 of section 2. Cangjl with the semantics
of I K, the above semantics draws the conclusion #fatC could be read a®C andvVR.C asOC'. This in fact is the reason
to consider. ALC as a multimodal version af K" without hybrid aspects. But we can say that TBOX reasoniqgiéormed in
multimodall K.

Based on [23, 25, 13], the Hilbert calculus shown in Figurefilements TBox-reasoning. That is, it decides the sen®lntic
relationship®, § = C. ©. This is shown in [9], as well as, a sequent calculus for AB@Xsoning.

In [3], a general approach to prove computational compjesitHybrid Logics is presented. It is shown how to obtain,
from a formulaa, a 2-person game, designed to be polynomially implementad iAlternating Turing Machine [21], such that,
deciding existence of winning strategy for one of the playisrequivalent to decide satisfiability (SAT) af This approach
is used to show that SAT is in PSPACE, since any polynomiag timplementation on an Alternating Turing Machine can be
done in ordinary Turing Machine using polynomial space. &tmer, for Hybrid Modal LogicK it is possible to conclude
PSPACE-completeness of SAT, sinkeis already PSPACE-complete.

Assertions likex: C, aRb anda =< b are worth for ABox reasoning. In this complexity analysisafisfiability ini ALC we
consider this kind of assertions too. We prove th&tC , and hencd H K is PSPACE complete by adapting the game defined
in [3] to our case. The game is a 2-person game of polynonzalan the size of the proposed formula and assertions (ABoX).
We consider the Hybrid assertiong (C, aRb, a < b). We admit that assertions like< b might not be named as Hybrid, but
they are formally treated as Hybrid in the approach. The tdveeind is provided by the well-known theorem of Ladner [18] o
PSPACE completeness of Intuitionistic Logic and the logpesveen K and S4.

Theorem 1 i ALC is decidable regarding satisfiability. The complexity dfisfability and derivability problems are PSPACE-
complete.

Proof 1 The lower bound follows from the the fact that IPL is propedyntained ini ALC , and that IPL is PSPACE-complete.
Consider a the (general) assertiéi, I' C -, where© is the (sub)sequence of concept formulas Brid the (sub)sequence of
assertion formulas, i.e, formulas either of the fayRp or p : «. We have tha®, I' = ~ is satisfiable, if and only ifyco0) C v
is satisfiable in a model df. With the sake of a shorter presentation we consider onlyroleeR. Leté be (Mpeof) C . If A
is a set of formulas, &= I-set is a maximal consistent set of subformulas fismi {¢ < p: NOMINALS(A)}. The game is
played as follows, bybelard and3loise: on a list of (' U {¢})= I-sets.Jloise starts by playing a lis{ Hy, . . ., Hy} of T U {¢}
I-sets, and two relation® and=< on them.X is a pre-order relation on the I-sets.

Jloise loses if one of the following conditions does not hdld:

CF1 If H; X H,, and H;R H; then there exist#;, such that{,,RH; and H; < H;.
CF2 If H; X H,andH;,RH; then there isH,,, such that?; <X H,, andH,,RH;.

<C LetX = {p 2 ¢:p =< q € T'}. EachH; contains all the assertions representing the transitig#lexive closure of, under
<.

NWI H, containsl’ U {¢} and every othef; contain at least one nominal occurring InU {¢}.
NWII' No nominal occurs in more than odé;, j = 0, k.

NA For everyH; and everyy : « occurring inl’, ¢ : o € H;, iff for somej g € H; anda € Hj.

DC For all 3R.a that is a subformula occurring it U {¢}, if H; RH; and3R.a. ¢ H;, thena ¢ H;.
ICI For all ~« that is a subformula occurring iff U {¢}, if H; < H; and—a ¢ H;, thena € H;.

ICII Forall a; C ay that is a subformula occurring it U {¢}, if H; < H; anday T ag € H;, thenay € H; andas & H;

"The labels of the items remind their logical rolesi#£C semanticsNamingWNorlds | and I1,NominalAssign,DiamondCondition, | ntuitionistiocCondition
I to lll, AbelarddiamondCondition, Abelard ntuitionistidCondition | and II,IntM odell and 1, and<Cassertions



ICHI Forall ¢ < p,withg,p e NOMINALS(IT U{¢}),if H; X Hj,q € H;andp € H;,theng <p € H,,forn =0, ... k.

Vbelard continue by choosing af; and a formuladR.« € H;, or —a € H;, or oy C as € H;. Jloise must respond with
an I-setY’, such that:

ADC If the chosen formula iSR«, thena € Y and for each subformuldR.s fromT U {¢}, if AR.0 & H;, thenf ¢ Y.

AICI If the chosen formula is«, thena ¢ Y and for each subformulas fromT U {¢}, if -8 ¢ H;, thens € Y. For each
subformulas; C Ss fromT U {¢},if 81 C B2 & H;, thens, € Y andBs €Y.

AICIl If the chosen formula is&; T as, then eithera; € Y andas € Y, or oy € Y. For each subformula; T 8o from
TuU{¢},if 81 C B2 &€ H, thenB; € Y andBs ¢ Y. For each subformula:g fromT U {¢}, if =5 &€ H;, theng € Y.

IMI Inany case, for aly : § that is a subformula df U {¢}, ¢ : 8 € Y, iff {¢, 5} is contained inH;, for somej = 0, k.
IMIlIf g € Y, for some nominaj, thenY = H; for somej = 0, k. In this casedloise wins the game.

INeg If Y is equal to some Hintikka I-set already generateddiyise in a previous step of the game, then the game stops and
she wins the game.

The game stops antbelard wins, ifdioise cannot find art” as above. If she can find sugh it is added to the list of I-sets
and the=<-relation is updated tek U{(H;,Y)} and the match continues b%elard choosing another formula from the recently
updated list of Hintikka I-sets, considering the (possibiydated=-relation, leaving to her the task of finding anothér and
so on.

At roundm, Vbelard can only choose either a formula of modal depth less than naktg the modal depth afU {¢} minus
m, or a formula with number of: occurrences less than or equal to theccurrences of U {¢} minusm. Finally, loise wins
if she survive all attacks ofbelard. Since each attack is performed on a formula of less or equmalpdexity than the last one,
the maximum length of a match is bounded by the number ofosohifas occurring inl* U {¢} plus the number of nominals
occurring in the original query, this is a polynomial bound the length of the match, and hence the game. Using Lemma 1 we
have that satisfiability of the sequent is equivalent toterize of a winning strategy falloise. As existence of winning strategies
is a PTIME decision problem in Alternating Turing Machineg conclude thatALC satisfiability is PSPACE-complete.

Lemma 1 Jloise has a winning strategy, if and onlylif, © C ~ is satisfiable.

Proof 2 If T',© C « is satisfiable, the U {¢} also is and the existence of a model that satisfies it allowsifinition of an
initial list of I-sets to3loise play her winning strategydloise has only to provide the I-sets associated to each world is thi
model ofT" U {¢}. For the other direction, let us suppose thHbise has a winning strategy. This winning strategy will provide
us with model fol” U {£}. Sincedloise has a winning strategy, she has answered to each possible afo%elard, she also
has a winning starting list of I-sets. Thufleise can produce a Hintikka I-set for each attack of her opponéet. M be this
collection of all Hintikka I-sets possible to be generatgdiie winning strategy alloise. The model obtained iV, R, X, V)
such that: (1) given I-setd/;, M; € M, M;RM;, if and only if for every subformulaR.g, if 3R.5 ¢ M;, theng & M;; (2)

=< is a relation onM obtained byAloise using her winning strategy; (3Y (A4) = {M; : A € M,}; (4) ¢ : « holds inM;, iff,
{g.a} € M;; (5) ¢ = p holds inhf;, iff, H; < M; andg < p € Hj, for someH; belonging to the initial I-sets provided by
Jloise. From Lemma 2 we can see thatibise has a winning strategy, thanu {¢} has a model. This finishes the remaining
direction of this proof.

Lemma 2 For every subformula df U {¢}, (M, R, <X, V) =, «, ifand only if,a € M.
Proof 3 This is proved by induction on the number of symbols.in
The following facts are used in the proof of Lemma 2.
Fact 1 If M, < M;, then for every subformula; C ay of ' U {¢}, if o T an & M;, thenay € M; andas & M;.
Fact 2 If M; < M;, then for every subformutac of " U {¢}, if —a & M, thena € M;.
Fact 3 If a; C ag € M;, then for eaclt” € M, such thatM; X Y, eithera; € Y andas € Y, 0ra; €Y.



5 Conclusion

The main difference betweeld M L andI HK (i ALC ) relies in the fact that the latter has only one fixed set oflédgthat
are the denotation of the nominals, while the former has etefindividuals for each world, and, these individuals tve
denotation for the nominalsiALC was designed with the special purpose of representing legatledge. The amount of
individuals present id H M L semantics was not useful for representing legal knowleagemrding the jurisprudence principles
discussed in [15], for example. From the fact that K is PSPACE-hard, we have as a corollary that is PSPACE-hard, and
hence, complete, as well @8/ K. Sincel HM L is 2EXPTIME-hard, it is quite interesting to investigateatfs the reason for
this distance. We know, from the computational complextgrature, that the equality has a such strange consequérae
included in a logical language. Sometimes it does not hayeeffact in the complexity and sometimes it turns the loganir
decidable to undecidable. This is subject of further redgar
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