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Abstract

This article shows that some decision problems for the Intuitionistic Hybrid Modal Logics IK are PSPACE-complete.

1 Introduction

In [3], a general approach to prove computational complexity of Hybrid Logics is presented. There, it is shown how to obtain,
from a formulaα, a 2-person game, designed to be polynomially implemented in an Alternating Turing Machine, such that,
deciding existence of winning strategy for one of the players is equivalent to decide satisfiability (SAT) ofα. This approach
is used to show that SAT is in PSPACE, since any polynomial time implementation on an Alternating Turing Machine can
be done in ordinary Turing Machine using polynomial space. For Hybrid ModalK, for example, it is possible to conclude
PSPACE-completeness of SAT, sinceK is already PSPACE-hard.

The approach briefly explained above has been applied to Classical Modal Logics. In this article we adapt the approach in
order to take care of Intuitionistic Modal Logics. We prove PSPACE-completeness of Intuitionistic Modal K (IK, as presented
in [22, 25]). It is worth noting that the authors are not awareof any result on the computational complexity of the logicIK.
However, in a series of papers (see [30],[29],[28]), Wolterand Zakharyaschev showed how to embed intuitionistic modallogics
into standard modal logics extending the combinations of K and S4 (via extension of Goedel translation of intuitionistic modal
logic to S4). Given this translation and known complexity results for standard modal logics, the PSPACE-completeness would
follow for IK andIS4. In [30], it is shown a validity-preserving translation from IntK1 formulas into ones in a bimodal logic
contained inS4⊕K. The intuition is that, theS4 modality takes care of the intuitionistic feature ofIntK, by means of a Gœdel
translation, andK takes care of the ordinary modality✷ of IntK. In IntK, the⋄ is defined as⋄α ≡ ¬✷¬α. This (classical
?) definition of⋄ allowed an easier translation fromIntK to the bimodal language than an independent approach to⋄ would
take. Nevertheless, Fisher Servi has extended the Gœdel to atranslation ofExtIntK✷⋄, an interesting logic that imposes weaker
connection between✷ and⋄, into an extension of the bimodalS4 ⊕K. Various, intuitionisic based extensions ofExtIntK✷⋄

were studied (see [7, 20, 11, 12, 13, 10, 28, 27]).MIPC ([24]) is a particularly interesting case, for Bull [7] has provided a
translation ofMIPC into monadic first-order intuitionistic logic. This provesthat the computational complexity of SAT for
MIPC formulas is PSPACE-hard.

As it can be seen from the above paragraph, extensions of Gœdel translations are quite succesful in helping to provide worst-
case analysis for SAT problems in intuitionistic modal logics. However, when we take hybrid logics into account, there is no
known translation of Intuitionistic Hybrid Modal Logic (IHML) into a proposicional language. In the case ofIHML, the
technique of preserving validity translations seems to be useless.
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This article has two purposes: 1- We show that the technique presented in [1] can be adapted to nontrivial bimodal logics,as
it is the case ofIK2, and; 2- We show that this very technique can be used for intuitionistic modal hybrid logic (IHK). We prove
that both,IK andIHK are PSPACE-hard, and as both are extensions of PSPACE-completeIPL (Intuitionistic propositional
logic), then they are PSPACE-complete, regarding SAT.

Since our version ofIHK is an extension ofIK, section?? shows the proof of PSPACE-hardness ofIHK, leavingIK ’s
proof of complexity as a corollary. The choice forIHK is justified by the use we make of it in the formalization of legal reasoning
(see [16, 8, 15]). The kind of constructive reasoning pointed out to the distribution of⋄ over the∨, and the adoption of the axiom
⋄⊥ ↔ ⊥. In fact in [15, 16, 8] the legal knowledge is formalized by using an intuitionistic version of the Description Logic
(ALC) that is obtained from a sub-logic ofIHK by the usual relationship between description logic and hybrid modal logic
languages (consult [1] for a detailed view). In the present article we focus only on the fact thatIHK is a hydrid intuitionistic
logic havingIK as its propositional basis. Finally it is important to statethat a good reason to work withIK per seis the fact
that the only thing that we have to add to it in order to haveK (the classical one) is the excluded middle law. In section??,
we advice the reader that the logicIHK is notIHML. The latter can be seen as fragment of the intuitionistic first-order logic
based onIK. While IHK is defined from an intuitionistic version of the descriptionlogic ALC. In this section we argue that
IHML is 2EXPTIME-hard. Finally, in section?? we apply the technique presented in [3] to show thatIHK andIK are both
PSACE-complete. In the conclusion we discuss how this result is related to TBOX reasoning iniALC and if we extendiALC to
ABOX reasoning we go to 2EXPTIME-hard satisfiability. The proof of PSPACE-hardness ofIHK that is shown in section??
was firstly presented in the syntax ofiALC and can be found in [9]. In order to show main point defended bythis article, namely
the power of using the technique developed in [3] to Hybrid logics, we will use part of the proof found in [9] in the syntax of
IHK.

2 The Intuitionistic Modal Logic IK

IK was introduced during the 80’s in [25, 13, 23]. These modallogics arise from interpreting the usual possible worlds definitions
in an intuitionistic meta-theory. See [25] for a quite helpful discussion on the many alternative intuitionistic logics that are
possible to define , besidesIK. The language ofIK is the same of classical logic, namely:

ϕ ::= p | ⊥ | ⊤ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ✸ϕ | ✷ϕ

wherep is a propositional symbol inΦ, the propositional language ofIK.
A Hilbert calculus forIK is provided, after [23, 25, 13]. It contains all axioms of intuitionistic propositional logic and axioms

and rules shown in Figure 1. The calculus implements the syntactical relationshipΘ ⊢ ϕ, whereΘ is a set of formulas.

0. all substitution instances of theorems of Int. Prop. Logic

1. ✷(ϕ1 → ϕ2) → (✷ϕ1 → ✷ϕ2)

2. ✸(ϕ1 → ϕ2) → (✸ϕ1 → ✷ϕ2)

3. ✸(ϕ1 ∨ ϕ2) → (✸ϕ1 ∨✸ϕ2)

4. ✸⊥ → ⊥

5. (✸ϕ1 → ✷ϕ2) → ✷(ϕ1 → ϕ2)

MP If ϕ1 andϕ1 → ϕ2 are theorems,ϕ2 is a theorem too.

Nec If ϕ is a theorem then✷ϕ is a theorem too.

Figure 1: TheIK axiomatization

2Simpson, [25], argues thatIK is the true intuitionistic analoque ofK



The syntactical calculus will not be used directly in this article. It is shown also as a matter to help logicians to figure out
what are the general laws inIK. With this calculus we can provide an accountable definitionof a consistent set ofIK formulas.

Definition 1 A set of formulaΓ is consistent inIK, iff, Γ 6⊢ ⊥

Instead of the calculus, we can also use the semantical notions onIK. The definition of interpretation is provided in next
paragraph and is the main definition to precisely define what is a satisfiable formula, and the setSAT of satisfiable formula,
under a fixed propositional set of symbolsΦ.

The constructiveinterpretation ofIK is provided by astructureI formed by a non-empty set∆I of worlds, or states, a
(epistemic3) partial-order�I on∆I , i.e., a reflexive, transitive and antisymmetric relation;a binary relationRI ⊆ ∆I × ∆I

and mappingcdotI taking each atomic conceptp ∈ Φ to a setpI ⊆ ∆I which is closed under�I , i.e.,x ∈ pI andx �I y

impliesy ∈ pI . In the literature on modal logic, what we have just defined isalso called a (Kripke) model. We chose the term
interpretation and this denotative definition by stylisticreasons. We also sometimes use structure as a synonym of interpretation,
this use is emphatic when refering to the subjacent mathematical structure.

The interpretationI is extended from atomic concepts to arbitrary concepts via:

⊤I =df ∆I

⊥I =df ∅
(¬ϕ)I =df {x | ∀y ∈ ∆I .x � y ⇒ y 6∈ ϕI}

(ϕ1 ∧ ϕ2)
I =df ϕI

1 ∩ ϕI
2

(ϕ1 ∨ ϕ2)
I =df ϕI

1 ∪ ϕI
2

(ϕ1 → ϕ2)
I =df {x | ∀y ∈ ∆I .(x � y andy ∈ ϕI

1 ) ⇒ y ∈ ϕI
2 }

(✸ϕ)I =df {x | ∃y ∈ ∆I .(x, y) ∈ RI andy ∈ ϕI}
(✷ϕ)I =df {x | ∀y ∈ ∆I .x � y ⇒ ∀z ∈ ∆I .(y, z) ∈ RI ⇒ z ∈ ϕI}

According to the semantics of IK, the structuresI are models forIK whenever they satify two frame conditions:

F1 if w � w′ andwRv then∃v′.w′Rv′ andv � v′

F2 if v � v′ andwRv then∃w′.w′Rv′ andw � w′

The above conditions are diagrammatically expressed as:

w′ R
//

(F1)

v′

w
R

//

�

OO

v

�

OO
and w′ R

//

(F2)

v′

w
R

//

�

OO

v

�

OO

IK is simpler than [19] proposal of a constructive modal logic,sinceIK satisfies (like classicalK) ✸⊥ = ⊥ and✸(ϕ1 ∨
ϕ2) = ✸ϕ1 ∨✸ϕ2.

We call the reader’s attention to note that, given an interpretationI, x ∈ ϕI is equivalent to say thatϕ holds in the model
I at the statex, or in usual notationI, x |= ϕ. Using the above defined notion ofinterpretation we are in conditions to define
satisfiable formulas inIK.

Definition 2 A formulaα is satisfiable inIK, iff, there is an interpretationI =
〈

∆,�, R, ·I
〉

, such that, for eachw ∈ ∆,
I, w |= α (i.e.w ∈ αI ).

Definition 3 A setΓ of formulas is satisfiable, iff, there is an interpretationI =
〈

∆,�, R, ·I
〉

, such that, for eachw ∈ ∆, for
eachγ ∈ Γ,I, w |= γ.

3Regarding the relationship between the worlds in a intuitionistic possible world model, the relation between worlds can be taken as the set of propositions
that an hypothetical agent knows about the world



IK defines the usual (local) notion of logical consequence, that is complete and sound regarding the system in figure 1 [25].

Definition 4 Let Γ be a set ofIK formulas andα an IK formula. We say thatα is anIK logical consequence ofΓ, iff, for
every interpretationI =

〈

∆,�, R, ·I
〉

, ∀w ∈ ∆(I, w |= Γ ⇒ I, w |= α).

3 The Intuitionistic Hybrid Modal Logic IHML

A good way to improve the expressive power of a modal logic is to consider hybrid extensions of it. The fundamental resource
that allows a logic to be called “hybrid” is a set ofnominals. Nominals are a new kind of atomic symbol and they behave similarly
to proposition symbols. The key difference between a nominal and a proposition symbol is related to their valuation in a model.
While the setV(p) for a proposition symbolp can be any element of2V , the setV(i) for a nominali has to be a singleton set.
This way, each nominal is true at exactly one state (world) ofthe model, and thus, can be used to refer to this unique state.This
is why these logics are called “hybrid”: they are still modallogics, but they have the capacity to refer to specific statesof the
model, like in first-order logic. For a general introductionto hybrid logics, [2] and [5] can be consulted.

Definition 5 Let us consider a hybrid language consisting of a setΦ of countably many proposition symbols (the elements ofΦ
are denoted byp, q, . . .), a setΩ of countably many nominals (the elements ofΩ are denoted byi, j, . . .), such thatΦ∩Ω = ∅, the
intuitionistic connectives¬,∨,→ and∧, modal operators✸ and✷, and the operators@i, for each nominali (calledsatisfaction
operators). The formulas are defined as follows:

ϕ ::= p | i | ⊥ | ⊤ | ¬ϕ | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ✷ | ✸ϕ | @iϕ

We freely use the standard abbreviationϕ1 ↔ ϕ2 for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
The definition of an interpretation for this language is the same as definition for ordinary (intuitionistic) modal logic, but the

definition has to take care of nominals interpretation. Before introducing the precise definition, we have to comment that there
seems not to be a definitive answer to the question: “What is the right Intuicionistic Hybrid Modal Logic” ?IHML is built on
top of IK and is a conservative extension. If we add the excluded middle toIHML we obtainHML, the Hybrid Modal Logic
(Classical).

Note that according to the definition of formulasIHML, the formula@ji is well-formed. What does it mean ? At world
(state)j, the propositioni holds. Now,i is a proposition that holds only at the worldj. In other words,@ji says thati andj are
the “same” world. In this way, there must be a way to compare worlds, regarding some equivalence notion. At the same time, due
to its intuitionistic feature, there is need to consider a local notion for this equivalence relation, since each nominal determinies
a possible set of alternatives worlds. Thus, the semantics of IHML has to include a component to denote this set of possible
worlds, related to a given world. This semantics was initially proposed by Ewald [10] for intuitionistic tense-logic and adopted
definitively forIHML by Braüner and de Paiva in [6]. The following definition comes from [6].

Definition 6 Let Φ be a set of propositions an IHML-model for Φ is
M = 〈W,�, {∆w}w∈W , {∼w}w∈W , {Rw}w∈W , {Vw}w∈W 〉, where :

1. W is the (non-empty) set of worlds, partially ordered by�;

2. for eachw, ∆w is a non-empty set such that ifw � v then∆w ⊆ ∆v;

3. for eachw, ∼w is an equivalence relation on∆w, such that, ifw � v then∼w⊆∼v.

4. for eachw, Rw ⊆ ∆w ×∆w, such that ifw � v thenRw ⊆ Rv;

5. for eachw, Vw is a function fromΦ to 2Dw , such that, ifw � v thenVw(p) ⊆ Vv(p).

Moreover, for eachw andi, j, i′, j′, if i ∼w i′, j ∼w j′ andiRwj theni′Rj′. If i ∼ i′ andi ∈ Vw(p) theni′ ∈ Vw(p), for all
p ∈ Φ. This later condition together with 3, above, ensures that equivalent worlds must satisfy the same properties, The former
condition together with 4 ensures thatM is anIK model, taking into account only the modal fragment.



In order to interpret the Hybrid language intoM, we need to assign a unique world for each nominalni of the language. In
order to simplify the reading of the following definition, wewill considers that each nominalni is assigned to a unique worldi,
and all nominals in the language are distinct. Given a modelM, as above, the relationM, w, i |= α, wherew ∈ W , i ∈ ∆w and
α is a formula on the propositional languageΦ.

M, w, i |= p iff i ∈ Vw(p)
M, w, i |= nj iff i ∼w j

M, w, i |= α1 ∧ α2 iff M, w, i |= α1 andM, w, i |= α2

M, w, i |= α1 ∨ α2 iff M, w, i |= α1 orM, w, i |= α2

M, w, i |= α1 → α2 iff for all v, w � v, if M, v, i |= α1 thenM, v, i |= α2

M, w, i |= @nj
α iff M, w, j |= α

M, w, i 6|= ⊥
M, w, i |= ✸α iff there isk ∈ ∆w, iRwk andM, w, k |= α

M, w, i |= ✷α iff for all v, w � v, for all k ∈ ∆v, if iRvk thenM, v, k |= α

We say thatM, w |= α wheneverM, w, i |= α for every i ∈ ∆w. Analogously,M |= α wheneverM, w |= α, for
everyw ∈ W , under the supposition that the nominalsni are interpreted uniquely in each∆w. Finally, a formulaα is IHML-
valid wheneverM |= α, for every modelM. In [6] it is provided a sound and complete proof systems for IHML, regarded
this semantics. It is known how one can translate modal formulas in first-order logic formulas preserving validity by means
of the use of two-place relational symbols forR and one monadic symbolA(x) for each propositional letterA in the modal
language. In this way, the modal formula✷(A ∧B) is translated in∀x(R(a, x) → (A(x) ∧B(x))), ✸(B → C) is translated to
∃x(R(a, x) ∧ (B(x) → C(x))), the nominalni is translated in the formulaa = i and the formula@ni

A is translated inA(i),
for example. In general, a formulaα is translated into a formulaα⋆, such that, given a modelM and a worlda ∈ WM it is the
case thatM, w  α iff M  α⋆(a) anda is interpreted asw. In this way,α is anIHML tautology iffα⋆ is a valid first-order
intuitionistic formula (see [6] for a detailed discussion on this translation).

The translation, original from [6], mapsIHML formulas in a quite well-known fragment of first-order language, namely, the
Guarded first-order logic with equality. The satisfabilityproblem for this fragment of (classical) first-order logic is 2EXPTIME-
complete. However, if we allow only two variables in the guards4 the correponding SAT problem is only EXPTIME. These results
can be found in [14]. As the translation to Intuitionistic first-order logic has to take into account the order relation regarded to
the intuitionistic interpretation of the logical implication and the universal quantification, we have to consider a fragment of
first-order (classical) logic that is able to express transitivity and reflexivity. It is shown in in [26, 17] that GF+TG, namely
the guarded first-order logic that allows transitive relation only as guards and any relation, including the equality, elsewhere, is
2EXPTIME-hard. Thus,IHML is 2EXPTIME-hard.

4 The Hybrid Logic IHK

As already shown, Hybrid logics add to usual modal logics a new kind of propositional symbols, thenominals, and also the so-
calledsatisfaction operators. Because of the proximity of its corresponding descriptionlogic, namelyiALC, we use here other
notation for nominals, instead of @. A nominal is assumed to be true at exactly one world, so a nominal can be considered the
name of a world. Ifx is a nominal andX is an arbitrary formula, then a new formulax :X called a satisfaction statement can be
formed. The satisfaction statementx :X expresses that the formulaX is true at one particular world, namely the world denoted
by x. In hindsight one can see thatIHK shares with hybrid formalisms the idea of making the possible-world semantics part of
the deductive system. WhileIK makes the relationship between worlds (e.g.,xRy) part of the deductive system,IHK goes one
step further and sees the worlds themselvesx, y as part of the deductive system, (as they are now nominals) and the satisfaction
relation itself as part of the deductive system, as it is now asyntactic operator, with modality-like properties. In contrast with
the above mentioned approaches, ours assign a truth values to some formulas, also called assertions, they are not concepts as in
[4], for example. Below we define the syntax of general assertions (A) and nominal assertions (N ) for ABOX reasoning inIK.

4In the formulas∀x(R(a, x) → (A(x) ∧B(x))) and∃x(R(a, x) ∧ (B(x) → C(x))), R(a, x) is the guard.



Formulas (F ) also includes subsumption of concepts interpreted as propositional statements.

N ::= x : C | x : N A ::= N | xRy F ::= A | C ⊑ C

wherex andy are nominals,R is a role symbol andC is a concept. In particular, this allowsx : (y : C), which is a perfectly
valid nominal assertion.

Definition 7 (outer nominal) In a nominal assertionx : γ, x is said to be the outer nominal of this assertion. That is, in an
assertion of the formx : (y : γ), x is the outer nominal.

I, w |= C meansw ∈ CI , that is, entityw satisfies conceptC in the interpretationI5. I is a model ofC, writtenI |= C

iff ∀w ∈ I.I, w |= C. |= C denotes that∀I.I |= C. All previous notions are extended to setsΦ of concepts in the usual
way. I, w |= x : C holds, if and only if,∀zx �I x . I, zx |= C. In a similar fashion,I, w |= xRy holds ,if and only if,
∀zx � x.∀zy � y.(xI

x , z
I
y ) ∈ RI . That is, the evaluation of the hybrid formulas does not takeinto account only the worldw, but

it has to be monotonically preserved. It can be observed thatfor everyw′, if xI � w′ andI, x′ |= α, thenI, w′ |= α holds.
Given a setΘ 6 of formulas and the setΓ of concepts, the following definition states whenΘ,Γ entailsδ.

Definition 8 We writeΘ,Γ |= δ if it is the case that:

∀I.((∀x ∈ ∆I .(I, x |= Θ)) ⇒ ∀(Nom(Γ, δ)).∀~z � Nom(Γ, δ).(I, ~z |= Γ ⇒ I, ~z |= δ)

~z is vector of variablesz1, . . . , zk andNom(Γ, δ) is its vector of outer nominals occurrying in each nominal assertion ofΓ∪{δ}.
x is the only outer nominal of a nominal assertion{x : γ}, while a (pure) conceptγ has no outer nominal.

iALC arises from interpreting the usual possible worlds definitions in an intuitionistic meta-theory. As we already commented
it is based on [6].IHK is the hybrid logic associated toiALC İn the latter, concepts are described as:

C,D ::= A | ⊥ | ⊤ | ¬C | C ⊓D | C ⊔D | C ⊑ D | ∃R.C | ∀R.C

In IHK concepts are taken as propositions and whenever the description logic semantics of a concept is a non-empty, its
corresponding proposition holds in the related semantics.The reader can see the strong correspondence whereC,D stands for
concepts,A for an atomic concept,R for an atomic role.

iALC syntax is more general than standardALC since it includes subsumption⊑ as a concept-forming operator. We have
no use for nested subsumptions, but they do make the system easier to define, so we keep the general rules. Negation could be
defined via subsumption, that is,¬C = C ⊑ ⊥, but we find it convenient to keep it in the language. The constant⊤ could also
be omitted since it can be represented as¬⊥. In IHK nested subsumptions, on the other hand, have the usual meaning assigned
by the intuitionistic implication.

A constructive interpretation ofiALC is a structureI consisting of a non-empty set∆I of entities in which each entity
represents a partially defined individual; a refinement pre-ordering�I on ∆I , i.e., a reflexive and transitive relation; and an
interpretation function·I mapping each role nameR to a binary relationRI ⊆ ∆I × ∆I and atomic conceptA to a set
AI ⊆ ∆I which is closed under refinement, i.e.,x ∈ AI andx �I y impliesy ∈ AI . The interpretationI is lifted from atomic
concepts to arbitrary concepts via:

⊤I =df ∆I

⊥I =df ∅
(¬C)I =df {x | ∀y ∈ ∆I .x � y ⇒ y 6∈ CI}

(C ⊓D)I =df CI ∩DI

(C ⊔D)I =df CI ∪DI

(C ⊑ D)I =df {x | ∀y ∈ ∆I .(x � y andy ∈ CI) ⇒ y ∈ DI}
(∃R.C)I =df {x | ∃y ∈ ∆I .(x, y) ∈ RI andy ∈ CI}
(∀R.C)I =df {x | ∀y ∈ ∆I .x � y ⇒ ∀z ∈ ∆I .(y, z) ∈ RI ⇒ z ∈ CI}

5In IHK, this w is a world and this satisfaction relation is possible world semantics
6Here we consider only acycled TBox with→ and≡.



InterpretationsI are models foriALC if they satisfy two frame conditions 2 and 2 of section 2. Compared with the semantics
of IK, the above semantics draws the conclusion that∃R.C could be read as✸C and∀R.C as✷C. This in fact is the reason
to consideriALC as a multimodal version ofIK without hybrid aspects. But we can say that TBOX reasoning isperformed in
multimodalIK.

Based on [23, 25, 13], the Hilbert calculus shown in Figure 1 implements TBox-reasoning. That is, it decides the semantical
relationshipΘ, ∅ |= C. Θ. This is shown in [9], as well as, a sequent calculus for ABOX reasoning.

In [3], a general approach to prove computational complexity of Hybrid Logics is presented. It is shown how to obtain,
from a formulaα, a 2-person game, designed to be polynomially implemented in an Alternating Turing Machine [21], such that,
deciding existence of winning strategy for one of the players is equivalent to decide satisfiability (SAT) ofα. This approach
is used to show that SAT is in PSPACE, since any polynomial time implementation on an Alternating Turing Machine can be
done in ordinary Turing Machine using polynomial space. Moreover, for Hybrid Modal LogicK it is possible to conclude
PSPACE-completeness of SAT, sinceK is already PSPACE-complete.

Assertions likea : C, aRb anda � b are worth for ABox reasoning. In this complexity analysis ofsatisfiability iniALC we
consider this kind of assertions too. We prove thatiALC , and henceIHK is PSPACE complete by adapting the game defined
in [3] to our case. The game is a 2-person game of polynomial size on the size of the proposed formula and assertions (ABox).
We consider the Hybrid assertions (q : C, aRb, a � b). We admit that assertions likea � b might not be named as Hybrid, but
they are formally treated as Hybrid in the approach. The lower bound is provided by the well-known theorem of Ladner [18] on
PSPACE completeness of Intuitionistic Logic and the logicsbetween K and S4.

Theorem 1 iALC is decidable regarding satisfiability. The complexity of satisfiability and derivability problems are PSPACE-
complete.

Proof 1 The lower bound follows from the the fact that IPL is properlycontained iniALC , and that IPL is PSPACE-complete.
Consider a the (general) assertionΘ,Γ ⊑ γ, whereΘ is the (sub)sequence of concept formulas andΓ is the (sub)sequence of
assertion formulas, i.e, formulas either of the formqRp or p : α. We have thatΘ,Γ ⇒ γ is satisfiable, if and only if,(⊓θ∈Θθ) ⊑ γ

is satisfiable in a model ofΓ. With the sake of a shorter presentation we consider only onerole R. Let ξ be(⊓θ∈Θθ) ⊑ γ. If ∆
is a set of formulas, a∆� I-set is a maximal consistent set of subformulas from∆ ∪ {q � p : NOMINALS(∆)}. The game is
played as follows, by∀belard and∃loise: on a list of(Γ∪{ξ})� I-sets.∃loise starts by playing a list{H0, . . . , Hk} ofΓ∪ {ξ}
I-sets, and two relationsR and2 on them.2 is a pre-order relation on the I-sets.

∃loise loses if one of the following conditions does not hold:7

CF1 If Hi 2 Hm andHiRHj then there existsHl, such thatHmRHl andHj 2 Hl.

CF2 If Hj 2 Hl andHiRHj then there isHm, such thatHi 2 Hm andHmRHl.

�C LetΣ = {p � q : p � q ∈ Γ}. EachHi contains all the assertions representing the transitive-reflexive closure ofΣ, under
�.

NWI H0 containsΓ ∪ {ξ} and every otherHi contain at least one nominal occurring inΓ ∪ {ξ}.

NWII No nominal occurs in more than oneHj , j = 0, k.

NA For everyHi and everyq : α occurring inΓ, q : α ∈ Hi, iff for somej q ∈ Hj andα ∈ Hj .

DC For all ∃R.α that is a subformula occurring inΓ ∪ {ξ}, if HiRHj and∃R.α 6∈ Hi, thenα 6∈ Hj .

ICI For all ¬α that is a subformula occurring inΓ ∪ {ξ}, if Hi � Hj and¬α 6∈ Hi, thenα ∈ Hj .

ICII For all α1 ⊑ α2 that is a subformula occurring inΓ ∪ {ξ}, if Hi � Hj andα1 ⊑ α2 6∈ Hi, thenα1 ∈ Hj andα2 6∈ Hj

7The labels of the items remind their logical roles iniALC semantics:NamingWorlds I and II,NominalAssign,DiamondCondition, IntuitionisticCondition
I to III, AbelardDiamondCondition,AbelardIntuitionisticCondition I and II,IntModelI and II, and�Cassertions



ICIII For all q � p, with q, p ∈ NOMINALS(Γ∪{ξ}), if Hi 2 Hj , q ∈ Hi andp ∈ Hj , thenq � p ∈ Hn, for n = 0, . . . , k.

∀belard continue by choosing anHi and a formula∃R.α ∈ Hi, or ¬α ∈ Hi, or α1 ⊑ α2 ∈ Hi. ∃loise must respond with
an I-setY , such that:

ADC If the chosen formula is∃Rα, thenα ∈ Y and for each subformula∃R.β fromΓ ∪ {ξ}, if ∃R.β 6∈ Hi, thenβ 6∈ Y .

AICI If the chosen formula is¬α, thenα 6∈ Y and for each subformula¬β fromΓ ∪ {ξ}, if ¬β 6∈ Hi, thenβ ∈ Y . For each
subformulaβ1 ⊑ β2 fromΓ ∪ {ξ}, if β1 ⊑ β2 6∈ Hi, thenβ1 ∈ Y andβ2 6∈ Y .

AICII If the chosen formula isα1 ⊑ α2, then eitherα1 ∈ Y andα2 ∈ Y , or α1 6∈ Y . For each subformulaβ1 ⊑ β2 from
Γ ∪ {ξ}, if β1 ⊑ β2 6∈ Hi, thenβ1 ∈ Y andβ2 6∈ Y . For each subformula¬β fromΓ ∪ {ξ}, if ¬β 6∈ Hi, thenβ ∈ Y .

IMI In any case, for allq : β that is a subformula ofΓ ∪ {ξ}, q : β ∈ Y , iff {q, β} is contained inHj , for somej = 0, k.

IMII If q ∈ Y , for some nominalq, thenY = Hj for somej = 0, k. In this case∃loise wins the game.

INeg If Y is equal to some Hintikka I-set already generated by∃loise in a previous step of the game, then the game stops and
she wins the game.

The game stops and∀belard wins, if∃loise cannot find anY as above. If she can find suchY , it is added to the list of I-sets
and the2-relation is updated to2 ∪{(Hi, Y )} and the match continues by∀belard choosing another formula from the recently
updated list of Hintikka I-sets, considering the (possibly) updated2-relation, leaving to her the task of finding anotherY , and
so on.

At roundm, ∀belard can only choose either a formula of modal depth less than or equal to the modal depth ofΓ∪{ξ} minus
m, or a formula with number of¬ occurrences less than or equal to the¬ occurrences ofΓ∪ {ξ} minusm. Finally, ∃loise wins
if she survive all attacks of∀belard. Since each attack is performed on a formula of less or equal complexity than the last one,
the maximum length of a match is bounded by the number of sub-formulas occurring inΓ ∪ {ξ} plus the number of nominals
occurring in the original query, this is a polynomial bound on the length of the match, and hence the game. Using Lemma 1 we
have that satisfiability of the sequent is equivalent to existence of a winning strategy for∃loise. As existence of winning strategies
is a PTIME decision problem in Alternating Turing Machines,we conclude thatiALC satisfiability is PSPACE-complete.

Lemma 1 ∃loise has a winning strategy, if and only ifΓ,Θ ⊑ γ is satisfiable.

Proof 2 If Γ,Θ ⊑ γ is satisfiable, thenΓ ∪ {ξ} also is and the existence of a model that satisfies it allows the definition of an
initial list of I-sets to∃loise play her winning strategy.∃loise has only to provide the I-sets associated to each world in this
model ofΓ ∪ {ξ}. For the other direction, let us suppose that∃loise has a winning strategy. This winning strategy will provide
us with model forΓ ∪ {ξ}. Since∃loise has a winning strategy, she has answered to each possible move of∀belard, she also
has a winning starting list of I-sets. Thus,∃loise can produce a Hintikka I-set for each attack of her opponent.LetM be this
collection of all Hintikka I-sets possible to be generated by the winning strategy of∃loise. The model obtained is〈M,R,2, V 〉
such that: (1) given I-setsMi,Mj ∈ M , MiRMj, if and only if for every subformula∃R.β, if ∃R.β 6∈ Mi, thenβ 6∈ Mj; (2)
� is a relation onM obtained by∃loise using her winning strategy; (3)V (A) = {Mi : A ∈ Mi}; (4) q : α holds inMi, iff,
{q, α} ⊆ Mi; (5) q � p holds inMi, iff, Hj 2 Mi andq � p ∈ Hj , for someHj belonging to the initial I-sets provided by
∃loise. From Lemma 2 we can see that if∃loise has a winning strategy, thenΓ ∪ {ξ} has a model. This finishes the remaining
direction of this proof.

Lemma 2 For every subformula ofΓ ∪ {ξ}, 〈M,R,2, V 〉 |=Mi
α, if and only if,α ∈ Mi.

Proof 3 This is proved by induction on the number of symbols inα.

The following facts are used in the proof of Lemma 2.

Fact 1 If Mi 2 Mj, then for every subformulaα1 ⊑ α2 ofΓ ∪ {ξ}, if α1 ⊑ α2 6∈ Mi, thenα1 ∈ Mj andα2 6∈ Mj .

Fact 2 If Mi 2 Mj, then for every subformula¬α ofΓ ∪ {ξ}, if ¬α 6∈ Mi, thenα ∈ Mj.

Fact 3 If α1 ⊑ α2 ∈ Mi, then for eachY ∈ M , such that,Mi 2 Y , eitherα1 ∈ Y andα2 ∈ Y , or α1 6∈ Y .



5 Conclusion

The main difference betweenIHML andIHK (iALC ) relies in the fact that the latter has only one fixed set of worlds that
are the denotation of the nominals, while the former has one set of individuals for each world, and, these individuals arethe
denotation for the nominals.iALC was designed with the special purpose of representing legalknowledge. The amount of
individuals present inIHML semantics was not useful for representing legal knowledge,according the jurisprudence principles
discussed in [15], for example. From the fact thatIHK is PSPACE-hard, we have as a corollary thatIK is PSPACE-hard, and
hence, complete, as well asIHK. SinceIHML is 2EXPTIME-hard, it is quite interesting to investigate what is the reason for
this distance. We know, from the computational complexity literature, that the equality has a such strange consequencewhen
included in a logical language. Sometimes it does not have any effect in the complexity and sometimes it turns the logic from
decidable to undecidable. This is subject of further research,
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[16] Edward Hermann Haeusler, Valéria de Paiva, and Alexandre Rademaker. Intuitionistic logic and legal ontologies.In
Proceedings of JURIX 2010, pages 155–158. IOS Press, 2010.

[17] Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable first-order logic with equiv-
alence closure. InLICS, pages 431–440, 2012.

[18] R. Ladner. The Computational Complexity of Provability in Systems of Modal Logics.SIAM Journal on Computing,
6:467–480, 1977.

[19] Michael Mendler and Stephan Scheele. Towards constructive DL for abstraction and refinement.Journal of Automated
Reasoning, 44(3):207–243, 2010. Also at Proc. 21st Intl Workshop Description Logics.

[20] H. Ono. On some intuitionistic modal logics, 1977.

[21] C.H. Papadimitriou.Computational complexity. John Wiley and Sons Ltd., 2003.

[22] G. Plotkin and C. Stirling. A framework for intuitionistic modal logics. InProceedings of the Conference of Theoretical
Aspects of Reasoning about Knowledge, Monterrey, CA, USA, 1986.

[23] G Plotkin and C Stirling. A framework for intuitionistic modal logics. InProceedings of the 1986 Conference on Theoretical
aspects of reasoning about knowledge, pages 399–406, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[24] A. Prior. Time and Modality. Clarendon Press, Oxford, 1957.

[25] A. Simpson.The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh, December
1993. Revised September 1994.

[26] Wieslaw Szwast and Lidia Tendera. Fo2 with one transitive relation is decidable. InSTACS, pages 317–328, 2013.

[27] Frank Wolter. Superintuitionistic companions of classical modal logic.Studia Logica, 58:229–259, 1997.

[28] Frank Wolter and Michael Zakharyaschev. On the relation between intuitionistic and classical modal logics. algebra and
logic, 1996.

[29] Frank Wolter and Michael Zakharyaschev. Intuitionistic modal logics. InLogic and Foundations of Mathematics. Kluwer
Academic, 1999.

[30] Frank Wolter and Michael Zakharyaschev. Intuitionistic modal logics as fragments of classical bimodal logics. InLogic at
Work. Springer-Verlag, 1999.


